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complex approach, which is why there have 
been few studies on this assumption (1, 4). 
Unfortunately, in most of these studies, 
researchers have fitted multi-state models with 
an individual homogeneity assumption, but they 
have made no attempt to assess this assumption 
(1, 5-11). Considering individual homogeneity 
assumption can make a multi-state model 
simpler but if this assumption is not made, it will 
lead to an improper fitting of the model and 
incorrect inferences. There are various sources 
which cause this assumption not to be made in a 
multi-state model. These sources are known as 
“sources of heterogeneity.” One of these sources 
of heterogeneity in statistics is failing to 
consider many of patients’ features in the study 
which is statistically interpreted as “individual 
frailty” (12, 13). In general, limitations such as 
lack of measurement, being unobservable 
(hidden), cost of data collection, and patients’ 
features cause some of the patients’ variables not 
to be considered (12, 14-17). It will be 
somewhat optimistic to assume that the model is 
homogeneous when some variables of patients 
under study have not been considered. The lack 
of homogeneity vis-à-vis many individual 
characteristics of patients underestimate or 
overestimate the actual value of multi-state 
model parameters (transition rates between the 
states of the model). 

Considering individual homogeneity 
assumption in multi-state models refers to the 
adequacy of existing data on patients or subjects 
in the study to explain the differences made in 
transition rates between the states of the model 
and the change-time of states. 

For better understanding, suppose in a multi-
state model, there are only two states of “being 
healthy” and “relapse” and there are also two 
variables of “age” and “smoking.” Based on an 
individual homogeneous multi-state model, the 
event rate of relapse for two patients, a smoker 
and one who is “’33-year-old” is the same, 
whereas the event time of relapse is different in 
these patients. In fact, this mismatch is because 
of assuming the model to be homogeneous in 
relation with some features of patients which 
have not been considered. Thus, relapse time 
changes cannot be justified by taking only two 

variables of “age” and “smoking” into 
consideration, and more data on patients are 
needed. The reason behind such changes can be 
explored using individual frailty as some 
patients (due to some different characteristics 
from others) are frailer than others. Thus, a 
random factor is needed in the model to justify 
these changes or this heterogeneity. 

The most common way to enter this random 
factor in a multi-state model is modeling the 
effect of disregarded variables with a frailty 
factor. Adding the frailty factor to the multi-state 
model, each patient will have his own unique 
characteristic which is often considered as 
individual frailty factor. 

In general, adding frailty factor will cause 
multi-state model and estimation of parameters 
to be complicated. For this reason, few studies 
have used multi-state models with frailty factor. 
Cook et al., in this vein, have suggested fitting 
such a model using log-normal distribution for 
random effects. In their study, a separate random 
item with a log-normal distribution for every 
transition rate has been considered (18, 19). 
Satten has also presented simpler forms to assess 
individual homogeneity assumption in multi-
state models (20). Based on their model, a 
random item in every transition rate is 
considered to be same. The complexity of multi-
state models due to adding frailty factor has 
caused some researchers to use methods such as 
mover-stayer models to solve this problem  
(21, 22). In mover-stayer model, in each 
transition, two sub-population are considered in 
which patients either move into another state or 
stay in the same state. Most studies carried out 
in this area, of course, are limited to the 
assessing methods of individual homogeneity 
assumption or fitting individual heterogeneous 
models (1, 3, 23-26). Fitting multi-state models 
with frailty factor not only provides a method 
for assessing homogeneity assumption based on 
likelihood ratio test, but also makes it possible 
(in case this assumption has not been made) to 
fit a proper model to data when the model is 
robust in relation with individual homogeneity 
assumption (27). However, a theoretical study 
examining the absence of individual 
homogeneity assumption has always been missed 
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out to introduce researchers with an explicit 
policy on multi-state models. Therefore, this 
study, without any simulation and only based on 
asymptotic theory, has been designed to 
investigate the effect of the absence of individual 
homogeneity assumption in multistate models. 

Methods 

In this section, the effect of individual 
homogeneity assumption misspecification will 
be discussed without any simulation and only 
based on asymptotic theory. For better 
understanding, the simplest multi-state model 
schematically shown in figure 1 is considered. 
This model is the basis of other more complex 
multi-state models; therefore, the results 
obtained from this model are easily 
generalizable to other models. 
 

 
Figure 1. Two-state model transition from state r to 
state s with a transition rate of λ 
 

In order to examine the effect of the absence 
of individual homogeneity assumption, we 
generalize the mechanism established by Satten, 
known as tracking model (20). The reason this 
method is used is that the likelihood function is 
analytically solvable. It should be noted that 
because this study only focuses on the individual 
homogeneity assumption, it is basically assumed 
that Markov and time homogeneity assumptions 
are made. Suppose two states of r and s are 
available and patients with a transition rate of λ, 
according to figure 1 are transitioned from state 
r to state s (Figure 1). 

These two states can be presented to all 
common forms for Markov multi-state models 
and at a broader level for hidden Markov multi-
state models (when states contain classification 
error). Therefore, the results of this transition 
can be generalized for progressive models and 
illness-death models which are among the most 
common models in this area. Now, suppose all 
patients at time 0 are in state r, some of them are 
transitioned to state s, and some are censored in 
state r. The state s can be an absorbing state like 

death or can be a transient state like relapse or 
disability. Moreover, suppose that in the 
transition, a patient is followed m times at 

regular time intervals of 
�� Thus, as shown in 

figure 2, under an individual homogeneous 
model with a constant transition rate of λ, it is 
possible to transition at any interval from state r 
to state s (Figure 2). 

 
     

 

0             
��        

�������     
�������         …   

��� t 
Figure 2. The mechanism of sampling times for 
transition from state r to state s 

 
Satten (20) showed that the overall likelihood 

function for a patient under tracking model 
according to figure 2 is as follows: 

 1�λ�
= �− �i − 1�m λ + log �1 − exp �−λ ���� 					i = 1,… ,m

−λ tm 																																																								i = m+ 1 

                                                     (1) 
 

in which i = 1,…, m is for transition from 
state r to state s at specified intervals and i = m 
+ 1 is for censoring at time t. In addition, the 
expected likelihood function for one patient in 
the study can be considered in the following 
formula: 

 

E�1�λ� = − λm !�i − 1�p"
�#�
"$�+ %!p"

�
"$� & . log �1 − exp �−λ tm��	 

   (2) 
 

pi in the above equation represents the 
probability of transition from state r to state s, 
and pm+1 represents censoring probability in 
state r at time t, so that ∑ p"�#�"$� = 1. When the 
process sojourn time in state r will have a 
distribution with a probability density function 
of f(t), this transition probability can be 
represented based on this distribution as 
follows: 

State r State s 
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As this study focuses only on the individual 
homogeneity assumption, Markov assumption is 
required to be made. Therefore, as in theory, 
Markov assumption is only made when in 
transition from state r to state s, the sojourn time 
at state r must have exponential distribution; we 
considered f(t) as an exponential distribution and 
according to this distribution, transition 
probability from state r to state s is converted to 
the following equation: 

 p)
=

*+,
+-exp.−	λ �i − 1�tm / − exp �−λ tim	� 			i = 1,… ,m
1 − !p0

�
0$� 																																												i = m+ 1 

    (4) 
 

Now, if λ1 is the maximum likelihood 
estimation for λ (transition rate from state r to 
state s), differentiating equation (2) and solving 

equation 
23���4��24 = 0, and assuming that A = ∑ �i − 1�p"�#�"$�  and B = ∑ p"�"$� , the 

estimation of mean transition rate from state r to 
state s will have convergence in probability as 
follows: 

 λ1 8→ �� log	�:#;: �            (5) 
 

Thus, based on an individual homogeneous 
model, the mean transition rate is convergent to 
the value obtained in equation (5). To examine 
the effect of individual homogeneity assumption 
misspecification, it is necessary to model 
equation (4) with frailty model. Suppose the 
transition rate for the jth patient in the study is a 
function of zj (individual frailty factor for jth 
patient), these zj s are a random sample from a 
distribution with probability density function of ϕ(z). In this case, we will be faced with a 
heterogeneous population where each patient 

will have his own transition rate. Adding frailty 
factor to equation (4), the transition probability 
from state r to state s is modeled as follows: 

 p" ==�exp		�− λ�z� ��"���� � − exp	�−λ�z� �"���. φ�z�. dz	 
           (6) 

 

Here, ϕ(z) is a probability density function 
for frailty factor in the model, and λ(z) is also a 
function of z. Regarding ϕ )z(  distribution, 
different functions can be selected for λ(z). For 
example, when Z ≈ N�0, σ��, the function is 
considered as λ�z� = λexp	�z�. But because E�exp�z� = exp EFG� H ≠ 1, ∀K� > 0, it will be 

problematic and difficult to examine the effect 
of individual homogeneity assumption 
misspecification considering a normal 
distribution for frailty factor. For this reason, in 
this study, gamma distribution with a mean 
value of 1 and variance θ was used as follows 
for the frailty factor and according to this 
distribution λ(z) function was considered as  
λ(z) = λ.z.. 

 

M�N� = N��O���exp	�− NP�Ґ[1P]P��O� 			E�z� = 1		Var�z� = θ 

 

Large values of θ in this distribution indicate 
high degrees of individual heterogeneity. The 
integral of equation (6) for frailty factor with 
gamma distribution as well as using Laplace 
transform for different values of m, t, and θ 
(which are the number of patients’ follow-ups in 
the transition from state r to state s, censoring 
time in state r, and the degree of heterogeneity, 
respectively) will have analytical solutions. For 
example, regarding m = 1 and based on (4) and 
(5) equations, it can easily be shown that the 
mean transition rate is convergent to the 
following formula in probability (Appendix A): 

 λ1 X→− 1t log�p�� 
 

Taking Laplace transform into consideration 

for gamma distribution as 1�s� = �1 + θs��Z[, 
the mean transition rate for m = 1 will converge 
to the following formula in probability 
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(Appendix A): 
 λ1 X→− 1t log ��1 + θλt���\� 
 

Therefore, based on asymptotic theory and 
convergence in probability, the mean transition 
rate from state r to state s will be a decreasing 
function of θ; and with an increase in θ which 
indicates higher degrees of individual 
heterogeneity, the mean transition rate will be 
underestimated. 

To better understand, the relative bias can be 
defined as follows: 

Relative bias  = 	4]�44  

In this equation, λ is the mean transition rate 
parameter from state r to state s, and λ1 is its 
maximum likelihood estimation based on an 
individual homogeneous model. 

In addition to analyze the bias of mean 
transition rate, it is also necessary to analyze the 
bias of mean transition rate variance in the 
misspecification of individual homogeneity 
assumption. For this purpose, using likelihood 
function of tracking model and results of some 
studies in this area including Cox and White 
studies, the approximate bias of mean transition 
rate variance was analyzed (28-32). According 
to studies conducted on asymptotic maximum 
likelihood estimations under misspecified 
model, (the absence of making individual 
homogeneity assumption in multi-state models), 
the asymptotic variance estimation of mean 
transition rate in an individual homogeneous 
multi-state model will be shown as follows: 

 

( )
( )( )

( )( )( )
2

2

U
ˆVar

I

λ
λ

λ

Ε
=

Ε

%

%
         (7) 

 U_�λ�, Ia�λ�, and E�Iaλ� will, respectively, 
represent score, observed, and expected Fisher 
information. Based on the likelihood function of 
(1) and (2) equations, the observed and expected 
Fisher information will be as follows: 

 Ib�λ� = �Gcd8	��4 ef��GE��cd8E�4 efHHG , E EIb�λ�H =
�∑ p"�. Ib�λ��"$�   

 

Fisher’s score will also be illustrated as 
follows: 

 

U_�λ� = tm �i − 1� + g texpE−λ tmHmE1 − exp E−λ tmHHh,	 
                                                             i < m + 1 

 

 So to calculate the asymptotic variance of 
mean transition rate, E�U�λ��� will be needed. 
But the main point is that Fisher score is not a 
function of frailty factor. But expected Fisher 
information is related to frailty factor and degree 
of heterogeneity via pi and equation (6) as 
follows: 

 E EIb�λ�H = Ib�λ�∑ �=�exp E−λ�z� ��"���� H −�"$�exp	�−λ�z� �"���. φ�z�dz�	         (8) 
 

Therefore, the approximate bias of mean 
transition rate variance can be analyzed using 
expected Fisher information. According to 
Appendix B, the asymptotic variance of 
correctly specified model (when individual 
homogeneity assumption in multi-state models 

is made) is also calculated as Var	�λ� = �3�j�4��. 
Thus, the relative bias for variance of mean 
transition rate in an individual homogeneity 

multi-state model will be 
klmn�4��kln	�4�kln	�4� . Var(λ) is 

variance of mean transition rate in a correctly 
specified model (when individual homogeneity 
assumption is made), and Vamr�λ� is variance 
estimation of mean transition rate in a 
misspecified model (when individual 
homogeneity assumption is not made).  

Results 

In this study, results of individual homogeneity 
assumption misspecification effect, i.e. when this 
assumption is not made, based on different values 
of m, t, and θ (which are the number of patients’ 
follow-ups in the transition from state r to state s, 
censoring time in  state r, and the degree of 
heterogeneity, respectively) were obtained. 

Figure 3 (right figure) illustrates relative bias 
values of a multi-state model with individual 
homogeneity assumption versus different values 
of censoring time for different values of m and 
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constant values of θ = 10 and λ = 0.2. Figure 3 
(left figure) also shows relative bias values 
versus different degrees of heterogeneity for a 
constant value of t = 10 and different values of 
m. The results of individual homogeneity 
assumption misspecification effect in figure 3 
indicate that generally, for any value of t 
(censoring time in r state) and m (number of 
patients’ follow-ups in the transition from r state 
to s state), mean transition rate is 
underestimated. These results also show that 
with an increase in heterogeneity degree (θ > 0), 
the relative bias value decreases. According to 
relative bias sign, it is evident that the mean 
transition rate is underestimated when 
heterogeneity degree increases. The interesting 
point about figure 3 is that with an increase in 
the number of patients’ follow-ups (m > 1), the 
intensity of bias decreases somewhat. 

The analysis of approximate bias of mean 
transition rate variance is also very similar to the 
bias of mean transition rate. Results of mean 
transition rate variance bias in figure 4 for 
constant values of t = 10, λ = 0.2, and different 
values of m and θ revealed that when 
heterogeneity degree increases, variance of 
mean transition rate is underestimated. Similar 
to mean transition rate bias, with an increase in 
the number of patients’ follow-ups, the intensity 

of bias decreases. But the variance of mean 
transition rate is still biased.  

Discussion  

Making an assumption on statistical models (such 
as multi-state models) is among limitations 
researchers may encounter. Multi-state models 
will help researchers better understand the natural 
disease process and will provide researchers with 
more accurate information whereas these models 
are greatly affected by assumptions such as 
Markov, time homogeneity, and individual 
homogeneity (3, 4). These assumptions can 
simplify the multi-state model, but in case they 
are not made, they will result in improper fitting 
of model hence incorrect inferences. Meanwhile, 
the complexity of methods analyzing individual 
homogeneity assumption has caused researchers 
to come up with two approaches. The first 
approach is to disregard this assumption and to fit 
an individual homogeneous multi-state model to 
the data. It should be noted that most studies on 
multi-state models are included in this approach 
(1, 4, 5, 33, 34). 

On the other hand, in the second approach, 
researchers, taking individual homogeneity 
assumption into consideration, try to fit an 
individual heterogeneous multi-state model to 
the data (18-20, 22, 35-37). 

 

   
Figure 3. Asymptotic estimation of mean transition rate with gamma frailty when individual homogeneity assumption 
has been made for different values of m, t, and θ 
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Figure 4. Asymptotic estimation of mean transition 
rate variance with gamma frailty when individual 
homogeneity assumption has been made for different 
values of m and θ, and the constant value of t = 10. 
 

This model is obtained by combining a multi-
state model with frailty factor and, obviously, it 
is robust toward individual homogeneity 
assumption and it is only because of the good 
flexibility, it shows to data that biostatisticians 
pay heed to it. As fitting an individual 
homogeneous model to data is optimistic, fitting 
an individual heterogeneous multi-state model is 
quite perplexing as well because researchers will 
face a homogeneous population assumption in 
the first approach and a heterogeneous 
population assumption in the second. Therefore, 
researchers in this study, without the 
complexities and limitations of simulation, tried 
to investigate the resulting bias in estimations of 
an individual homogeneous multi-state model 
when data were obtained from a heterogeneous 
population, using asymptotic theory. As one of 
the key parameters of multi-state models is mean 
transition rate, this study has focused on mean 
transition rate to investigate bias in different 
conditions. Results of this study showed that for 
different values of the number of patients’ 
follow-ups and censoring time, the mean 
transition rate has always been underestimated. 
In addition, when heterogeneity increases, the 
effect of individual homogeneity assumption 
misspecification increases too. In other words, if 
there is great heterogeneity in reality and if the 
individual homogeneous multi-state model is 

fitted, a large bias will exist in the estimation of 
mean transition rate. According to figure 3, it is 
also evident that bias intensity increases with an 
increase in the degree of heterogeneity. But by 
increasing the number of patients’ follow-ups, 
bias intensity will decrease to some extent. 
Furthermore, analyzing the bias of mean 
transition rate variance revealed that with an 
increase in the number of patients’ follow-ups, 
bias intensity will partly decrease. But with an 
increase in heterogeneity degree, the variance of 
mean transition rate is always underestimated. 
The results of this study have been achieved by 
regarding gamma distribution for frailty factor. 
However, the comparison between studies 
conducted based on heterogeneous multi-state 
models with log-normal and inverse Gaussian 
distributions for heterogeneity (individual frailty 
factor) and studies based on individual 
homogeneous multi-state models, also confirms 
the negative bias in the estimation of mean 
transition rates in individual homogeneity 
assumption misspecification (18, 20, 35). 
Therefore, regardless of heterogeneity 
distribution in a heterogeneous population, the 
estimations of mean transition rate in an 
individual homogeneous multi-state model are 
biased and underestimated. The analysis of bias 
resulted from individual homogeneity 
assumption misspecification can provide 
researchers with a clearer image in selecting a 
model. In other words, it will be a caution to fit 
individual homogeneous multi-state models, and 
vice versa, an incentive for fitting individual 
heterogeneous multi-state models.  

Conclusion 

Fitting an individual homogeneous multi-state 
model to data from a heterogeneous population 
will cause bias in estimation of multi-state 
model parameters, hence incorrect inferences in 
the population. 
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Appendix 

The application of asymptotic theory for the 
analysis of maximum likelihood estimations 
under misspecified model. 
 
Appendix A: Asymptotic estimation 
Suppose Ib�λ� is the likelihood function of a 
misspecified model with λ ∈ p parameters (for 
example, taking into account the individual 
homogeneity assumption in a multi-state model 
where the population is heterogeneous). Also 
suppose the likelihood function of a correctly 
specified model is 1(ψ) with q ∈ ψ parameters. 
According to the asymptotic theory, there is a 
value such as λs which is the answer to  

 
23�jb�4��24 = 0 equation and λ1 is convergent with it 

in probability. 
 λ1 8→ λs 

 

Accordingly, in this study using asymptotic 

theory as well, there is a formula like 
�� log 	�:#;�:  

which is obtained from 
23�j�4��24 = 0 equation. 

Therefore, mean transition rate from r state to 
s state has convergence in probability as follows: 

 λ1 8→mt log	�A + BA � 
 

Which A = ∑ �i − 1�p"�#�"$�  and B = ∑ p"�"$�  
For different values of m, also using ∑ p"�#�"$� = 1, it can be shown that equation (5) is 

transformed into the following form: 
 λ1 8→ �	� log	� �������8Z������8G�⋯�8fuZ�����8Z������8G����v�8w�⋯�8f�  

 

For the value of m = 1, equation (5) is 
simplified as follows: 

 λ1 8→ mt log	� 1p�� 
 

Using Laplace transform for Gamma 
distribution, the integral of equation (6) is 
solvable for p2. Thus, the mean transition rate to − �� log E�1 + θλt�uZ[ H is convergent. Keeping 

this same general trend, the equation (5) can be 
calculated for m > 1 values using mathematical 
calculations. Meanwhile, using Laplace transform 
for Gamma function, integral (6) is also solvable 
and is able to provide different pi values. 

 
Appendix B: Asymptotic variance 
Mean and variance results of maximum 
likelihood estimations under a misspecified 
model can be followed in studies conducted by 
Cox and White, and this study has used their 
results as well (28, 29). Similar to Appendix A, 
suppose Ib�λ� is the likelihood function of a 
misspecified model with λ ∈ p parameters (for 
example, taking into account the individual 
homogeneity assumption in a multi-state model 
where the population is heterogeneous). Also 
suppose the likelihood function of a correctly 

specified model is ( )ψl  with q ∈ ψ parameters. 
According to asymptotic theory, if λ1 is maximum 
likelihood estimation of λ under a misspecified 
model, its asymptotic covariance under a 
misspecified model will be as follows: 
 ! = EEIb�λs H�� VsE EI�λs H��

s  

 

in which Vs = E(U_�λs U_x�λs��; and U_ and Ia 
are, respectively, score and Fisher information 
under misspecified likelihood function. Moreover, 
if the model is correctly specified (model’s 
assumptions are made), it is shown that E EIb�λ�H = E EU�λ�Ux�λ�H. As a result, the above 

asymptotic covariance matrix becomes as follows: 
 ∑ = y�z�λ� ��
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