Confirmatory factor analysis of the Persian version of the multidimensional health locus of control scale - Form A

Teamur Aghamolaei¹, Farzan Madadizadeh²,⁴, Amin Ghanbarnejad³,⁴*

¹ Department of Public Health, School of Health, Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
² Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
³ Department of Public Health, School of Health, Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
⁴ Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran

Background & Aim: Health locus of control (HLC) is a construct that refers to how person’s beliefs influence on his/her health. The aim of this study was to assess the reliability and construct validity of multidimensional HLC (MHLC) scale in a representative Iranian samples.

Methods & Materials: This cross-sectional study was done among 881 subjects over 15 years old in Bandar Abbas, in the south of Iran through cluster sampling. Translated Persian version of MHLC questionnaire was administered to participants. Data were analyzed using confirmatory factor analysis (CFA) to compare three different models. Multiple groups CFA were conducted to examine the measurement equivalence across gender (390 men and 391 women) in EQS software. Reliability assessment was done by Cronbach’s α coefficient in SPSS v.16 software.

Results: Based on CFA, 18-item with three correlated factor had good fit (goodness-of-fit index = 0.92 and comparative fit index = 0.9). The results established full configural, metric, and scalar invariance across gender. Cronbach’s α for subscales was ranged from 0.65 to 0.74.

Conclusion: Eighteen items Persian version of MHLC scale in three oblique subscales was introduced as a valid and reliable tool for assessing HLC among the general population in Iran. Furthermore, it is derived that the MHLC was full invariant across gender.

Key words: Factor analysis; Validation study; Reliability

Introduction

Health locus of control (HLC) is a construct that refers to how person’s beliefs influence on his/her health (1). HLC based on Rotter’s social learning theory was developed to measure these beliefs on an introverted internal-external dimensionality (2, 3).

The individuals with an internal locus of control are believed to have control on the environmental condition and generally are effective in social activity and self-confident while individuals with an external locus of control believe to their outcomes determined by external factors and they do not have control over their health (4). Success and failures of these people are believed to determine by factors such as chance, others, and fate and they often are not responsible for their actions in life (5).

The multidimensional HLC (MHLC) construct is an improvement over the classic conceptualization. This set of beliefs includes: internal locus of control (if the individual
believes that personal activities or opinions can affect their outcomes of their health) and external locus of control (if the individuals believe in their health can be determined by powerful others such as god, physicians, or if chance is believed to control the health outcome) (1).

These three dimensions (internal, chance, and powerful others) are traditionally assumed to be independent factors; however, some studies have shown non-negligible between factor correlations (6, 7). Score on each MHLC subscales can be determined by beliefs and actions an individual experienced in his/her life.

MHLC scales have three Form A, B, and C. Form A and B is equivalent and can be administered to general community (1) and Form C was developed by Wallston and Stein to evaluate the HLC among unhealthy individuals (8).

The MHLC scales were applied to different languages (9-12), and cross-cultural differences in HLC were studied. South Asian woman was compared to British Caucasian women in a study, and it is concluded that Asian women have a higher score on internality dimension than British women because, in the Asian cultures, religion and belief in God play an important role in life. The outcome and actions a religious person have done in life are based on trusting in god and this belief help individuals to overcome health problems and disease shortly that reflects the high score on internal dimension. It is remarkable to mention that Asian women scored higher on externality than western women. Belief in fate and assisting others were the component of Asian cultures that controls the externality HLC. However, the construct validity of HLC scale in two compared samples has not been investigated in the mentioned study, and it could be different over cultures (13).

Iranian community is a specific one due to the beliefs of people and its religiosity. As mentioned previously these beliefs could affect the procedure of responding to the subscales of MHLC. To the best of our knowledge, there is only one study to assess the factor structure and reliability of MHLC among Iranian community that has done by Moshki et al. (14), but the population in the study restricted to college students, and it could not be considered as a representative sample for all Iranian people. In this study, we investigated the structure of translated Persian version of MHLC - Form A, using confirmatory factor analysis (CFA) based on some theoretical constructs defined to the present in a relatively representative sample of Iranian adults. Form A is used in general population; therefore, we use it in the study. Some studies evaluated the construct validity and reliability of other forms (B and C) across the world (15-17).

Some empirical studies found that sex of individuals related to MHLC (18-20), and some other studies concluded that MHLC does not vary in gender (21, 22). Therefore, more research is needed to clarify whether gender differences in MHLC exists. One way to reply to this issue is to examine whether men and women conceptualize HLC in a similar way. That is, to examine whether measurement equivalence/invariance (ME/I) can be established across genders. Because women and men may have different beliefs about health and its locus of control, it is essential to ensure that groups compared share similar conceptualizations of the relevant latent construct (23-25). Up today, there is only one research in comparing factor structure of MHLC across gender (26), and this context should be investigated in other culture and extensively in other western samples. In this study, we also analyze the best models across gender for ME/I.

Methods

In this cross-sectional study conducted during 2013-2014, 881 participants over 15 years old were asked to fill the questionnaire. Individuals who answered the questionnaire completely were 781 out of 881 (response rate = 88.65%). Non-respondents were excluded from the study. 49.9% of them were male and 51.1% were female.

The subjects were selected through cluster sampling from Bandar Abbas. Bandar Abbas city is located in south part of Iran, this city is capital of Hormozgan province, and its population was 448861 in 2011 census data (27). The city divided into 12 districts based on health
center and their coverage, and then from each
district, two location points were selected, and
from each point, 10 households were selected in
a regular manner. In each household, two
persons were sampled at random. Bandar Abbas
is an economic and industrial city in south of
Iran, and due to this characteristic, people from
all ethnicity founded in Iran live in it.

Ethical approval of this study was gained
from the Research Ethics Committee, which at
the time of the study was based at Hormozgan
University of Medical Sciences. Individuals
were informed through an informed consent
based on the Helsinki declaration (28).

The participants were asked to answer the
HLC questionnaire. The questionnaire was
MHLC with 18 questions to assess the HLC in
three dimensions: Internality, chance, and
powerful others. Each subscale consisted
6 items. For simplicity, in rest of the paper, we
indicate each subscale with abbreviated one as
follows: Internal HLC dimension as IHLC;
chance HLC dimension as CHLC and powerful
others HLC dimension as PHLC.

We used a translated version of MHLC that
is rephrased according to that translated by
Moshki et al. (14).

Each item is scored based on 6-point Likert
scale from 1 (“strongly agree”) to 6 (“strongly
disagree”), and score for each subscale is
computed as summation of corresponding items.
Therefore, each subscale scoring ranged from
6 to 36.

Construct validity of the questionnaire was
evaluated by CFA. In CFA, researcher is interested
in investigating a specific factorial structure so
that number of factors, number of items and pattern of
loading items on factors were determined
according to a hypothesized theory and then fitness
of model assess based on covariance structure of
observed data (29, 30). Minimum sample size for
conducting CFA is approximately 10 for each item
(31) since the questionnaire was used in this study
contained 18 items, the minimum required sample
size was 180. In this study, 881 subjects were
surveyed that met the minimum condition.

Results

Demographic characteristics: The mean age of
the sample was 34.4 (standard deviation = 12.4)
and ranged from 15 to 82 years. In terms of marital
status, 162 (20.8%) were single, 605 (77.4%) were
married, 4 (0.5%) were divorced, and 10 (1.3%)
were widowed. In term of education level, 21 (2.7%)
were illiterate, 194 (24.9%) had primary
degree, 272 (46.2%) had high school degree, and
204 (26.2%) had college/university degree. In term
of occupational status, 45 (5.8%) were
unemployed, 224 (28.7%) were employed, 246
(31.5%) were housewife, 178 (22.5%) were self-
employed, and 90 (11.5%) were high school or
Factor analysis of Persian MHLC scale

college students. Preliminary analysis showed that there is no significant difference in demographic characteristics such as sex, education level, occupational status, and household location and age between respondents and non-respondents participants.

Reliability analysis and internal consistency: Scale descriptive statistics for MHLC subscale, IHLC, CHLC, and PHLC were reported in table 1.

Reliability assessment was carried out through Cronbach’s alpha. Descriptive statistics and reliability related index were shown in table 2.

Table 1. Descriptive statistics for subscales of MHLC - Form A

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Number of items</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHLC</td>
<td>6</td>
<td>30.23 ± 4.22</td>
</tr>
<tr>
<td>CHLC</td>
<td>6</td>
<td>21.54 ± 6.67</td>
</tr>
<tr>
<td>PHLC</td>
<td>6</td>
<td>30.19 ± 5.96</td>
</tr>
</tbody>
</table>

MHLC: Multidimensional health locus of control, IHLC: Internal health locus of control, CHLC: Chance health locus of control, PHLC: Powerful others health locus of control, SD: Standard deviation

Initial model identification: In context of CFA, we checked the assumption of normality through the Mardia’s multivariate kurtosis and its normalized estimate (38). The assumption of normality was not met according to normalized kurtosis estimate 57.78 (P < 0.0001), then we used robust generalized least square method for estimation instead of maximum likelihood approach. We used Satorra-Bentler scaled chi-square statistics (39), for correction of non-normality existing in our data.

Three models are investigated in the present study; (1) one factor model for HLC; (2) two factor (internality/externality) model; and (3) correlated three-factor models with three oblique factors.

Table 2. Means, Standard deviations, item-total correlations and Cronbach’s alpha coefficients of items

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Items</th>
<th>Mean ± SD</th>
<th>Corrected item-total correlation</th>
<th>Cronbach’s alpha for subscales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>1. If I get sick, it is my own behavior which determines how soon I get well again</td>
<td>4.76 ± 1.21</td>
<td>0.184</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>6. I am in control of my health</td>
<td>4.99 ± 1.10</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. When I get sick I am to blame</td>
<td>4.46 ± 1.57</td>
<td>0.374</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. The main thing which affects my health is what I myself do</td>
<td>5.26 ± 0.99</td>
<td>0.480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. If I take care of myself, I can avoid illness</td>
<td>5.53 ± 0.91</td>
<td>0.402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17. If I take the right actions, I can stay healthy</td>
<td>5.23 ± 1.22</td>
<td>0.433</td>
<td></td>
</tr>
<tr>
<td>Externality</td>
<td>2. If I am going to get sick, I will get sick</td>
<td>3.88 ± 1.61</td>
<td>0.397</td>
<td>0.74</td>
</tr>
<tr>
<td>chance</td>
<td>4. Most things that affect my health happen to me by accident</td>
<td>3.94 ± 1.58</td>
<td>0.471</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Luck plays a big part in determining how soon I will recover from an illness</td>
<td>3.05 ± 1.71</td>
<td>0.536</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. My good health is largely a matter of good fortune</td>
<td>3.08 ± 1.67</td>
<td>0.559</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15. No matter what I do, I’m likely to get sick</td>
<td>3.62 ± 1.57</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. If it’s meant to be, I will stay healthy</td>
<td>3.98 ± 1.92</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>Externality</td>
<td>3. Having regular contact with my physician is the best way for me to avoid illness</td>
<td>5.16 ± 1.30</td>
<td>0.505</td>
<td>0.74</td>
</tr>
<tr>
<td>powerful others</td>
<td>5. Whenever I don’t feel well, I should consult a medically trained professional</td>
<td>5.07 ± 1.31</td>
<td>0.517</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. My family has a lot to do with my becoming sick or staying healthy</td>
<td>5.16 ± 1.20</td>
<td>0.289</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Health professionals control my health</td>
<td>4.73 ± 1.37</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. When I recover from an illness, it’s usually because other people (for example, doctors, nurses, family, and friends) have been taking good care of me</td>
<td>5.08 ± 1.25</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18. Regarding my health, I can only do what my doctor tells me to do</td>
<td>4.99 ± 1.30</td>
<td>0.522</td>
<td></td>
</tr>
</tbody>
</table>
CFA was conducted for all models separately, and the results for goodness-of-fit were shown in table 3.

Based on GFI, all models except Model 1 fit the data well. Furthermore, the value of AGFI for Model 1 and Model 2 was less than determined criteria for good fitting. The reported chi-squared with an associated degree of freedom for all models indicating poor fit (P < 0.0001), but as mentioned previously we did not use it as an index for evaluating the goodness of fitting model (36). Normed chi-square statistic for Model 2 and Model 3 indicating adequate but close fit. RMSEA for Model 3 was < 0.05 and indicating good model fitting, but for Model 2 and Model 3 based on the RMSEA values, it can be resulted to the moderate fit. At final, based on the reported results and comparison between models, we choose the Model 3 as best model. Furthermore, it is mentionable that AIC for Model 3 was less than others that indicated the superiority of Model 3. Factor loadings for three-factor model were reported in table 4.

Correlation analysis: Correlations between factors were estimated from CFA obtained solution shown in table 5. The only significant correlation was between IHLC and PHLC.

ME/I: At last step of analysis, we examined ME of three-factor model across gender in four stages: first, we test the model separately for men and women. Second, we conducted the simultaneous test of the equal form (identical factor structure). Third, we test the equality of factor loadings. Fourth, we test the equality of indicator intercepts.

Single-group CFAs were first conducted to examine the construct validity of the MHLC within each sex group. For men, the three-factor model verified acceptable model fit. All factor loadings were significant at a 0.05 level. For women, the three-factor model confirmed marginally acceptable model fit. Convergent validity was supported because all factor loadings were significant at the 0.05 level.

Table 3. GFI for models

<table>
<thead>
<tr>
<th>Model</th>
<th>χ²</th>
<th>df</th>
<th>χ²/df</th>
<th>GFI</th>
<th>AGFI</th>
<th>CFI</th>
<th>RMSEA (90% CI)</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: One general factor</td>
<td>579.01</td>
<td>134</td>
<td>4.3</td>
<td>0.89</td>
<td>0.86</td>
<td>0.87</td>
<td>0.077 (0.071-0.082)</td>
<td>311</td>
</tr>
<tr>
<td>2: Correlated 2 factor</td>
<td>530.28</td>
<td>135</td>
<td>3.9</td>
<td>0.90</td>
<td>0.88</td>
<td>0.89</td>
<td>0.071 (0.066-0.077)</td>
<td>261.7</td>
</tr>
<tr>
<td>3: Correlated 3 factor</td>
<td>451.7</td>
<td>132</td>
<td>3.4</td>
<td>0.92</td>
<td>0.90</td>
<td>0.90</td>
<td>0.049 (0.04-0.059)</td>
<td>187.7</td>
</tr>
</tbody>
</table>

GFI: Goodness-of-fit index, AGFI: Adjusted goodness-of-fit index, CFI: Comparative fit index, RMSEA: Root mean square error of approximation, CI: Confidence interval, AIC: Akaike information criterion

Table 4. Standardized factor loadings for correlated three-factor model

<table>
<thead>
<tr>
<th>Item phrase</th>
<th>IHLC</th>
<th>CHLC</th>
<th>PHLC</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If I get sick, it is my own behavior which determines how soon I get well again</td>
<td>0.159</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>2. If I am going to get sick, I will get sick</td>
<td>0.231</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>3. Having regular contact with my physician is the best way for me to avoid illness</td>
<td>0.552</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>4. Most things that affect my health happen to me by accident</td>
<td>0.337</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>5. Whenever I don’t feel well, I should consult a medically trained professional</td>
<td>0.619</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>6. I am in control of my health</td>
<td>0.506</td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>7. My family has a lot to do with my becoming sick or staying healthy</td>
<td>0.359</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>8. When I get sick I am to blame</td>
<td>0.425</td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>9. Luck plays a big part in determining how soon I will recover from an illness</td>
<td>0.815</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>10. Health professionals control my health</td>
<td>0.585</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>11. My good health is largely a matter of good fortune.</td>
<td>0.819</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>12. The main thing which affects my health is what I myself do</td>
<td>0.559</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>13. If I take care of myself, I can avoid illness</td>
<td>0.613</td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>14. When I recover from an illness, it’s usually because other people (for example, doctors, nurses, family, and friends) have been taking good care of me</td>
<td>0.504</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>15. No matter what I do, I’m likely to get sick</td>
<td>0.180</td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>16. If it’s meant to be, I will stay healthy</td>
<td>0.420</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>17. If I take the right actions, I can stay healthy</td>
<td>0.554</td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>18. Regarding my health, I can only do what my doctor tells me to do</td>
<td>0.503</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

*All factor loadings are significant at level 0.01. IHLC: Internal health locus of control; CHLC: Chance health locus of control; PHLC: Powerful others health locus of control
Factor analysis of Persian MHLC scale

Table 5. Correlation between subscales in health locus of control

<table>
<thead>
<tr>
<th>Subscales</th>
<th>IHLC</th>
<th>CHLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLC</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>PHLC</td>
<td>0.621*</td>
<td>0.104</td>
</tr>
</tbody>
</table>

*Significant at level 0.05. IHLC: Internal health locus of control, CHLC: Chance health locus of control, PHLC: Powerful others health locus of control

For multiple groups CFA, at first a test of configural invariance was conducted by considering a baseline model with no constrained parameters across two groups (equal form). The model showed acceptable model fit. Since configural invariance has been verified, consequent ME/I tests can be conducted. At the second step of MGCFA, to test metric invariance, corresponding factor loadings were set to be equal across two groups (equal factor loadings). The chi-square differences test result proposed that factor loadings were invariant across gender ($\chi^2_{(15)} = 9.13$, $P > 0.0500$).

At third step of MGCFA, scalar invariance was tested by further constraining like items’ intercepts on the latent construct to be invariant across gender (equal indicator intercepts). The constrained model showed acceptable model fit. Based on the chi-square differences test result, it’s concluded that factor like item s’ intercepts on the latent construct was invariant across gender ($\chi^2_{(15)} = 16.78$, $P > 0.0500$). The results of this section are shown in table 6.

Discussion

The first aim of this study was to examine the internal consistency of the MHLC scale to evaluate its reliability. Cronbach’s α in the present study was ranged from 0.65 to 0.74 which was comparable to that in Wallston’s normative data (0.67-0.77) (1), Kuwahara’s study (0.62-0.76) in Japan (19), Moshki’s study (0.66-0.72) in college students (14), Astrom’s study (0.72-0.76) in Ghana (22), Hashemian’s study (0.61-0.80) among Iranian female with history of breast cancer (42), and Marshal’s study (43). These values showed good reliability and were sufficiently acceptable for administration to Iranian community.

All the correlations between factors were computed. Since these coefficients were calculated from latent variables, so the measurement error is considered in the calculation. There was an insignificant correlation between IHLC and CHLC and its value considered as weak. Furthermore, the correlation between CHLC and PHLC was weak and insignificant. The only significant and approximately strong correlation was between IHLC and PHLC. The reported correlations between factors were in a different pattern around the world (1, 7, 41). However, in this study, correlation between IHLC and CHLC and between CHLC and PHLC was weak that is not in accordance with the original study by Wallston and colleagues (7). They mentioned that there is no correlation between IHLC and PHLC, but in the present study, we found that there is relatively strong correlation between IHLC and PHLC; this can be true because a person’s beliefs could be in a close interaction with others beliefs in Iranian community.

As a secondary goal, construct validity of the HLC scale was evaluated through CFA by comparing three competing models. This is the first study in Iran that comparing theoretical models of MHLC.

Table 6. Tests of measurement invariance of MHLC in men and women

<table>
<thead>
<tr>
<th>Test type</th>
<th>χ^2</th>
<th>df</th>
<th>χ^2_{diff}</th>
<th>Δdf</th>
<th>RMSEA (90% CI)</th>
<th>GFI</th>
<th>AGFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single group solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men (n = 390)</td>
<td>239.65</td>
<td>132</td>
<td></td>
<td>0.046</td>
<td>(0.036-0.055)</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>Women (n = 391)</td>
<td>314.95</td>
<td>132</td>
<td></td>
<td>0.06</td>
<td>(0.051-0.068)</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>Measurement invariance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal form</td>
<td>553.52</td>
<td>264</td>
<td></td>
<td>0.038</td>
<td>(0.033-0.042)</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>Equal factor loadings*</td>
<td>562.65</td>
<td>279</td>
<td>9.13</td>
<td>15</td>
<td>0.036 (0.032-0.04)</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>Equal indicator intercepts**</td>
<td>579.43</td>
<td>294</td>
<td>16.78</td>
<td>15</td>
<td>0.035 (0.031-0.039)</td>
<td>0.91</td>
<td>0.90</td>
</tr>
</tbody>
</table>

*In comparison with equal form. ** In comparison with equal factor loading. GFI: Goodness-of-fit index; AGFI: Adjusted goodness-of-fit index; RMSEA: Root mean square error of approximation; CI: Confidence interval; MHLC: Multidimensional health locus of control
A one-factor model for HLC was investigated in the present study and was not met the criteria for acceptable fit; therefore, it can be concluded that HLC should be a multidimensional scale rather than one dimension. After that, we were looking for a better model and compared the model with 2 latent factors “internality” and “externality” and 3 latent factors titled “internality,” “chance externality,” and “powerful others.”

The two-factor model did not fit the data well, however, some studies such as Astrom and Blay (22), Cooper and Fraboni (40), and O’Looney and Barett (26), stated that HLC has only two dimensions; internality and externality.

The results confirmed the original factor structure with the 18 items of the original instrument grouped in three correlated theoretical dimensions as conceptualized by the original authors of the MHLC (IHLC, CHLC, and PHLC). CFA closely approached the standard criteria for adequate fit for models of this type (29). The three-factor model confirmed by CFA is similar to Otto study in Germany (1, 7, 41). Spanish version applied by Rodriguez-Rosero (44), kuwahara’s study (19), Hashemian’s study (42), Ross et al. study among college students (27), and Casey study (45).

Conclusion

Based on the results, this instrument has good reliability and validity among a sample of general individuals. Cross-cultural of this instrument confirmed well in the present study. Furthermore, it mentioned to assess other forms of MHLC, i.e., Form B and C in an Iranian population, there are some studies which evaluate psychometric properties of other forms (15, 16).

Conflict of Interests

Authors have no conflict of interests.

Acknowledgments

The authors wish to thank the participants for contributing the research and respond the questionnaire patiently. Part of funding for conducting this research was provided by Deputy of Research and Technology, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

References

7. Wallston KA. The validity of the

http://jbe.tums.ac.ir
Factor analysis of Persian MHLC scale

28 http://jbe.tums.ac.ir

