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Background & Aim: In medical sciences, the outcome is the time until the occurrence of an event 

of interest. A multi-state model (MSM) is used to model a process where subjects’ transition takes 

place from one state to the next. For instance, a standard survival curve can be thought of as a 

simple MSM with two states (alive and dead) and the transition between these two-state models is a 

method used to analyze time to event data. The most important aspect of this model is that it 

considers intermediate events and models the effect of covariates on each transition intensity. Some 

diseases like cancer, human immunodeficiency virus (HIV), etc. have several stages. In the present 

study, these models were reviewed using cardiac allograft vasculopathy (CAV) data focusing on 

different approaches. 
Methods & Materials: The data of 576 CAVs were collected. A time dependent simple Cox regression 

model (CRM) was fitted and a three-state illness-death model was considered for the MSMs. 
Results: In the simple CRM, only the individuals with the age of > 50 were significant, however for 

Cox Markov model (CMM) and Cox semi-Markov model (CSMM), the donor’s age > 40, sex, and 

the individuals with the age of > 50 were other significant covariates. 
Conclusion: The CMM and CSMM showed more accurate results about risk factors compared to 

the simple CRM. 
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Introduction
1
 

In medical research, longitudinal datasets 

have a significant importance. Multi-state 

models (MSMs) create a feasible framework to 

analyze multiple records of individuals. Patients 

experience several stages of a disease over time 

and every stage has its own features making it 

important to study with more details. MSMs are 

useful tools to study the intermediate events in a 

history of subset of longitudinal data. In 

situations where estimation of survival 

probabilities is of interest, it is then a question 

whether inclusion of information on the 
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intermediate events in a MSM will give rise to 

estimators which are in any sense better than 

what may be obtained from a simple analysis of 

the marginal distribution of the time to failure 

(1). Unlike traditional time-to-event analysis 

where only one outcome is possible for each 

individual, Markov chains allow analysts to 

calculate survival times in multiple states. This 

is particularly attractive for studies of chronic 

diseases with well-defined phases, like cancer 

(2) A MSM models a stochastic process with a 

set of discrete states (at least two). Events are 

transitions between states, however some states 

are absorbing, meaning that there is not any 

transition from them, like death. The simplest 

MSM is mortality model including  

2 states and more 1 transition state makes the 

model complicated. Survival models are capable 
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of analyzing incomplete data. Left censor, right 

censor, interval censor, and left truncation can 

happen, hence adding more difficulty to analyze 

the model and construct likelihood function (3). 

Censoring causes underestimate time to events. 

In some cases, it was assumed in this study that 

the censor and truncated data are independent of 

the process (4). In the present study, a 3-state 

illness-death (disability) model was considered 

with 3 transitions, which showed the progression 

of a disease (Figure 1). In this model, healthy 

individuals become diseased and then die or 

healthy individuals die because of other reasons. 

 

 
Figure 1. Three state illness-death model 

 

There are two important terms in this context, 

transition probability and transition intensity or 

transition rate.  

A multi-state process is a stochastic process 

(X (t), t ∈ T) with a finite number of states S = 

{1, …, N}. 

The time interval is T = [0, τ], τ < ∞ and state 

occupied at t is the value of time t. A multi-state 

process X (.) generates a history Ht-(ϭalgebra) 

consisting of the observation of the process in 

the interval [t, ∞). In relative to this history, 

transition probabilities may be defined by the 

following relation: 
 

                               
 

              
           

  
  

 

Transition intensity displays potential hazard 

of progression to state j conditionally on 

occupying state h. 

In this study, the focus is on the Markov and 

semi-Markov MSMs: 

1) Markov models: Markov chain models 

can accommodate censored data, competing 

risks (informative censoring), multiple 

outcomes, recurrent outcomes, frailty, and 

inconstant survival probabilities (2). Future 

evolution depends on current state rather than 

the events occurred before the current state. In 

most applications, a Markov model is assumed 

for the MSMs (5). When there are covariates, a 

Cox (6) model is used to model the effect of 

covariates on each transition intensity. 

2) Semi-Markov models: The future 

evolution of the process does not depend on the 

current time but rather on the duration in the 

current state (7). 

The goal in the present study was to fit 

MSMs and time dependent Cox regression 

model (CRM) on a time-to-event data and 

compare them. 

Methods 

The well-known cardiac allograft vasculopathy 

(CAV) dataset studied by Sharples et al. (8) 

were used in the present study. This dataset 

included 576 participants who received 

transplants between august 1979 to January 

2000 and survived at least 1 year after 

transplantation and had undergone at least one 

coronary angiogram. The state at each time was 

a grade of CAV, a deterioration of the arterial 

walls (9). Approximately, each year after 

transplantation, each patient had an angiogram, 

at which CAV could be diagnosed. The result of 

the test was in the variable state, with possible 

values 1 and 2, representing CAV-free and 

CAV, respectively. A value of 3 was recorded at 

the date of death. Years designated the time of 

the test in years since the heart transplantation. 

Other variables included age (age at screen), 

donor age, and sex (0 and 1 representing men 

and women, respectively). Age and donor age 

were considered categorical, however the sex 

variable was dichotomous. Two cut points for 

age and donor’s age were taken into account 

mostly based on the quantiles. 30 and 50 were 

the cut points of age variable and for 20 and 40.  

Time dependent CRM: In the analysis of 

time-to-event data, the Cox proportional-hazards 

regression model has achieved popularity due to 

considering the censoring and the covariates. 

The Cox model with time-dependent covariate 

was much more complex than with fixed (time 

1. Healthy 

3. Dead 

2. Diseased 
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invariant) covariates due to the possibility of 

changing the values over time. This model 

involved constructing a function of time (10). 

The marginal distribution of survival times, that 

is, without consideration of CAV, was analyzed 

using the Cox proportional hazards regression 

model (6). Thus, the hazard function for 

individual i with covariates Zi was assumed to 

have the following form with unspecified 

baseline hazard function α0(t) and regression 

coefficients β. 
 

                     
     

 

The survival probability  ̂      for given 

covariates of simple Cox model, Z, maybe 

estimated by 
 

 ̂      ∏      ̂       ( ̂ )      
 

Where,  ̂     is the Breslow estimator for the 

integrated baseline hazard function.  

Cox-Markov model (CMM): Finding a 

relation between predictor variables and the 

response variable was one of the biggest goals of 

MSMs in the present study. This model have 

been used in literature to relate the individual 

characteristics to the intensity transition through 

a possibly time-dependent covariate vector Z 

(11). The simplest way was to decouple the 

whole process into several survival models. The 

illness-death model has been presented in figure 

2, fitting separate intensity rates to all possible 

transitions using semi-parametric Cox 

proportional hazard regression models, while 

making appropriate adjustments to the risk set 

(7). Using Cox-like models of the form 

                         
   , the transition 

intensities for illness death model are 

                , (4). This model was 

CMM which assumes the process to be 

Markovian. Estimating transition probability, 

taking into account independent z variables, yields: 
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Cumulative hazard function was 

 ̂         ̂            ̂     using  ̂       

∫        
 

 
 to estimate  ̂      . 

 

 
Figure 2. A three-state model for the cardiac allograft 

vasculopathy (CAV) data 

 

Cox semi-Markov model (CSMM): Markov 

models have some limitations which hindered its 

use. Markov assumption was violated in some 

situations, meaning that the future depended on 

the individual's past only through his/her current 

state. In this model, the time was reset to zero 

when a new state was reached, hence the time 

scale was called “clock reset”. Each time the 

patient entered a new state, time was reset to 0. 

Therefore, CSMM could be easily fitted for the 

illness-death model; transition 2 → 3 was the 

difference between CMM and CSMM. The 

Markov assumption was not satisfied, as the 

mortality after getting CAV depended strongly 

on the time since getting CAV, suggesting that a 

semi-Markov model might be more appropriate 

(12). It was only needed to remodel α23, so that it 

depended only on the duration in state 2. Using 

time since getting CAV as the basic time scale 

for the model for mortality after getting CAV, 

We model α23 as follows 
 

             

              (  
     )                                

 

Where, t2i was the entry time into state 2. R 

package p3state.msm was used for analyses. The 

significance level was considered to be 0.050 in 

this study. 

Results 

15% and 85% of the participants were women 

and men, respectively. The mean age of the 

CAV-free 

Death 

CAV 
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individuals was 47 (47 and 43 for men and 

women, respectively). The mean age of donors 

was 30. The number of individuals suffering from 

CAV was 179 out of 576 (31.00%). Among the 

patients, 12 (14.46%) women and 167 (33.87%) 

men had CAV. Further information was listed in 

tables 1 and 2. During the study period, 576 

individuals were at risk of transition from the 

state 1 to states 2 and 3 and transition from the 

state 2 to state 3. Of these, 179 (167 and 12 men 

and women, respectively) experienced a 

transition to the state 2, and 139 (120 and 19 men 

and women, respectively) to state 3.   

   
Table 1. Continuous characteristics of the study variables 

N 
Valid 

Age Donor's age 
576 576 

Missing 0 0 

Mean 47.21 30.78 

Mean SE 0.45 0.51 

Median 49.61 29.00 

Mode 41.80 18.00 

SD 10.85 12.29 

Variance 117.77 151.11 

Range 57.96 61.00 

Minimum 6.30 0.00 

Maximum 64.26 61.00 

Sum 27192.28 17727.00 

Percentiles 25 42.29 20.00 

50 49.61 29.00 

75 55.21 40.75 
SE: Standard error; SD: Standard deviation 

 

95 individuals (88 and 7 men and women, 

respectively) died without exposing to CAV. 

The number of individuals remaining in state 1 

was 258. In addition, 84 of individuals were 

censored on transition from state 2. 

The transition probabilities are changing over 

time. In the present study, transition 

probabilities were calculated only for median of 

time in table 3, the probability of remaining 

CAV-free cases was 0.78. The estimated 

probability for individuals with transition from 

state 1 to state 2 was 0.14. For patients with 

CAV, there was a probability of 0.18 to die and 

the probability of dying because of reasons other 

than CAV was 0.08. Patients with CAV had a 

0.82 probability to remain in state 2. It is 

noteworthy that these estimated transition 

probabilities were only valuable at median of 

time and they will change for other values of 

time (13). 

Model fit 

Time dependent CRM: In case of ignorance of 

the intermediate event, the results with time 

dependent CRM shown in table 4 indicated that 

only the individuals > 50 years old are 

significant (P = 0.0027). The individuals > 50 

years old have 2.46 chance of death compared 

with those with < 30 years old. 

Multi-State Models (MSMs) 

Cox Markov Model (CMM): In transition from 
the state 1 to the state 2 as see in table 5, donor’s 
age variable for 20-40 years old donors was in 
borderline significance (P = 0.053), and for 
more than 40 years old, donors were highly 
significant (P < 0.001). Individuals with donors 
> 40 years old had a 2.233 chance of CAV 
compared to individuals with donors < 20 year 
old. The sex variable was significant as well  
(P = 0.030). Comparing to men, women had 
0.518 hazard of CAV. 

In transition from the state 1 to the state 3 in 
table 6, it was shown that the age variable for 
category of > 50 years old CAV-free individuals 
was significant (P < 0.001). Individuals > 50 years 
old had 3.652 chance of dying without getting 
CAV compared to < 30 year-old individuals. 

 
Table 2. Table of frequencies 

  Without CAV CAV 

  Alive rate (%) Dead rate (%) Alive rate (%) Dead rate (%) 

Sex 
Men 206 (63.2) 120 (36.8) 79 (47.3) 88 (52.7) 

Women 52 (73.2) 19 (26.8) 5 (41.7) 7 (58.3) 

Age (year) 

< 30 27 (73.0) 10 (27.0) 8 (36.4) 14 (63.6) 

30-50 99 (67.8) 47 (32.2) 41 (41.8) 57 (58.2) 

> 50 132 (61.7) 82 (38.3) 35 (59.3) 24 (40.7) 

Donor's age 

(year) 

< 20 58 (65.2) 31 (34.8) 13 (36.1) 23 (63.9) 

20-40 136 (66.7) 68 (33.3) 39 (41.1) 56 (58.9) 

> 40 64 (61.5) 40 (38.5) 32 (66.7) 16 (33.3) 
CAV: Cardiac allograft vasculopathy 
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Table 3. Transition probabilities for median of time 

 State 1 State 2 State 3 

State 1 0.78 0.14 0.08 

State 2 0 0.82 0.18 

 

The donor’s age > 40 years old was an 

important risk factor (P = 0.043). In addition, 

individuals with donor of > 40 years old had 

1.665 chance of dying without getting CAV 

comparing to individuals with donor age of < 20 

years old. Moreover, in transition from the state 

2 to the state 3, there was no important risk 

factor depending on CMM. 

 
Table 4. Time-dependent Cox regression model (CRM) 

 
Coef 

Exp 

(coef) 

Se 

(coef) 
z P-value Lower Upper 

Factor 

(age) 1 

0.131 1.140 0.238 0.549 0.583 0.714 1.818 

Factor 

(age) 2 

0.901 2.463 0.247 3.646 0.000 1.517 3.998 

Factor 

(dage) 1 

0.076 1.079 0.170 0.445 0.657 0.773 1.505 

Factor 

(dage) 2 

0.201 1.222 0.201 1.000 0.317 0.825 1.811 

Sex 0.399 1.490 0.218 1.831 0.067 0.972 2.283 

Treat 1.013 2.754 0.160 6.340 < 0.001 2.014 3.767 
Likelihood ratio test =  69.01099 on  6  df, P < 0.001 

-2 * Log-likelihood = 2358.093 

dage: Donor’s age 

 

Cox Semi Markov Model (CSMM): Markov 

assumption should only check for transition 

from 2 to 3 in the illness-death model. The 

Markov assumption was highly significant in the 

present study (P = 2.27e-11).  

 
Table 5. Cox Markov Model (CMM) transition from state 

1 to state 2 

 
Coef 

Exp 

(coef) 

Se 

(coef) 
z P-value l u 

Factor 

(age) 1 

0.189 1.208 0.242 0.780 0.435 0.751 1.943 

Factor 

(age) 2 

-0.142 0.867 0.261 -0.546 0.585 0.520 1.446 

Factor 

(dage) 1 

0.390 1.476 0.202 1.928 0.054 0.993 2.194 

Factor 

(dage) 2 

0.803 2.233 0.229 3.515 < 0.001 1.427 3.495 

Sex -0.657 0.519 0.304 -2.161 0.031 0.286 0.941 

dage: Donor’s age 

Likelihood ratio test =  22.85106 on 5 df, P < 0.001 

-2 * Log-likelihood = 1904.55 

Table 6. Cox Markov Model (CMM) transition from state 

2 to state 3 

 
Coef 

Exp 

(coef) 

Se 

(coef) 
z P-value l u 

Factor 

(age) 1 

0.436 1.547 0.359 1.216 0.224 0.766 3.127 

Factor 

(age) 2 

1.295 3.652 0.357 3.632 < 0.001 1.815 7.347 

Factor 

(dage) 1 

0.164 1.178 0.224 0.732 0.464 0.759 1.829 

Factor 

(dage) 2 

0.510 1.665 0.252 2.025 0.043 1.017 2.726 

Sex 0.368 1.445 0.256 1.436 0.151 0.874 2.389 

dage: Donor’s age 

Likelihood ratio test = 37.28319 on 5 df, P < 0.001 

-2 * Log-likelihood= 1444.886 

 

This assumption was tested in table 7, 

showing that the transition rates in states were 

affected by the previous sojourn time. Therefore, 

CSMMs could be a better choice. This model 

was fitted only for transition from the state 2 to 

the state 3. Results in table 8 indicated that the 

donor’s age > 40 years old was significant  

(P = 0.034). Patients with CAV with donor’s age 

of > 40 year old had 0.48 chance of death 

compared to the patients with CAV with donor’s 

of < 20 years old. 

 
Table 7. Markov assumption test 

 Coef 
Exp 

(coef) 

Se 

(coef) 
z P-value 

Factor 

(age) 1 

-0.398 0.672 0.330 -1.210 0.227 

Factor 

(age) 2 

0.280 1.323 0.359 0.780 0.435 

Factor 

(dage) 1 

-0.238 0.788 0.284 -0.840 0.400 

Factor 

(dage) 2 

-0.753 0.471 0.356 -2.110 0.035 

Sex 0.787 2.197 0.409 1.920 0.054 

Start -0.292 0.747 0.046 -6.280 < 0.001 

dage: Donor’s age 

Likelihood ratio test = 61.5 on 6 df, P < 0.001 

n = 179, number of events = 95 

Discussion  

In the present study, the data were analyzed 

concerning CAV and mortality among patients 

with transplantation with three-state illness-

death models obtained by splitting the alive state 

from the simple two-state model for survival 

data into the states of healthy heart transplant 

recipients, CAV, and death.  
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Table 8. Cox Semi-Markov Model (CSMM) from state 2 to state 3 

 Coef Exp (coef) Se (coef) z P-value l u 

Factor (age) 1 -0.313 0.731 0.331 -0.945 0.345 0.382 1.400 

Factor (age) 2 0.196 1.216 0.364 0.538 0.590 0.596 2.483 

Factor (dage) 1 -0.291 0.748 0.276 -1.055 0.292 0.436 1.284 

Factor (dage) 2 -0.734 0.480 0.347 -2.116 0.034 0.243 0.947 

Sex 0.653 1.921 0.400 1.631 0.103 0.877 4.211 
dage: Donor’s age 

Likelihood ratio test = 9.381181 on 5 df, P = 0.095 

-2 * Log-likelihood = 708.6002 

 

In this study, the use of MSMs in the analysis 

of survival data were discussed in the scope of 

the three-state model. Nonparametric estimators 

for the transition probabilities have been 

presented and illustrated using a real dataset on 

CAV. The first model, a Markov process model 

did not fit the data since the mortality after CAV 

depended strongly on the time since CAV, and, 

instead, semi-Markov model was studied. These 

three-state models turned out to provide 

important clinical information by highlighting 

covariates affecting the mortality and covariates 

affecting the CAV. The main message of this 

study, however, is the fact that the precision of 

survival probability estimates based on the 

three-state models tended to be better than for 

those based on the simple Cox model. As it can 

be seen in the results, there are different risk 

factors affecting every single transitions. 

However, the result of simple CRM is not 

precise as MSMs.  

Conclusion 

In conclusion, the present study has shown 

that a MSM may in some cases be preferable to 

a model for the marginal survival distribution. 

Thus, for the MSM to be analyzed simply, exact 

times of transition are required when the 

observation of some transition times are 

interval-censored, hence the likelihood 

expressions become more involved. 

Moreover, the multi-state analysis requires 

some assumptions concerning a Markov or 

semi-Markov structure of the data assumptions 

which are avoided in the marginal analysis (14). 

Final problem with the MSMs is that estimates 

for transition probabilities are not generally 

available for semi-Markov models. At last, it is 

important to realize that there are several 

modelling strategies for the intermediate event 

and that each of these strategies has restrictions 

and may cause different results. 
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