Introduction

A multistate Markov model is a stochastic process in which subjects occupy one of a set of discrete states at any time. This model is convenient for describing repeated longitudinal events (stages) of the course of chronic diseases. In such cases, a patient may advance into or recover from adjacent disease stage which is called “transient” state or a patient at any disease stage may move to a state from which further transitions cannot occur called an “absorbing” state, often death or dropout.

This study demonstrates the application of multistate transition modeling using hypertension data. Hypertension is a chronic medical condition in which the blood pressure in the arteries is elevated which requires the heart to work harder than normal to circulate blood through the blood vessels (1). As it is known, blood pressure is summarized by two measurements, systolic and diastolic, which depend on whether the heart muscle is contracting (systole) or relaxed between beats (diastole).

According to World Health Organization (2), high blood pressure is said to be present if it is persistently at or above 140/90 mmHg. Assuming that a hypertensive patient under anti-hypertensive treatment may recover from hypertension, three states of the Markov process are identified. These are defined as: state 1, blood pressure < 140/90 mmHg; state 2, blood pressure ≥ 140/90 mmHg; and state 3, dropout. These states are illustrated by a directed graph, where distinct states are treated as nodes and possible transitions are considered directed edges as shown in figure 1.
Figure 1. Paths between the states of the process. BP: Blood pressure

State 1 is categorized as a healthy state and state 2 is categorized as an illness state. State 3, that is the dropout, is considered to be an absorbing state. The arrows in figure 1 show which transitions are possible between states. Transitions are permitted from health to illness, illness to dropout and health to dropout. Also recovery from illness to health is considered. Therefore, it is important to understand how the transitions among these states of hypertension take place and how the covariates influence these transitions.

Therefore, the multistate transition modeling of the hypertension states is used to predict the future clinical state and survival probability of a patient. Particularly, it is used to determine the conditional probability that a hypertensive patient can be in the next state of the disease given that the patient is in a known state of the disease, after a period of time; the conditional probability that a patient is staying in the same disease state until a specific time; and the probability that a patient survives for a specific time given the patient’s starting state of the disease. Following parts of this paper are organized as section 2 that describes the methods used, section 3 that presents the discussion of the main results of the study and finally, in section 4, conclusions are provided.

Methods

Description of the data

The data used in this paper is obtained from Jimma University Hospital, Ethiopia. All patients who were 18 years old or older and who had an anti-hypertensive treatment follow-up for a maximum of 18 months between September 2011 and January 2013 were included in the study. A total of 353 hypertensive patients satisfied these inclusion criteria. Of these, 172 (48.73%) were females and the remaining 181 (51.27%) were males. In addition, 152 (43.06%) patients had and 201 (56.94%) did not have hypertension history in their family. Almost all of the patients were dropped out from the anti-hypertensive treatment while only 2 (0.57%) of the patients were following the treatment.

Multistate modeling

A multistate process, X(t), is a stochastic process with a finite state space of possible transitions \(\xi = \{1, 2, \ldots, J\} \) where \(J \) is the number of states. The quantities of interest (state transition intensities and state occupation probabilities) can be calculated for complete data and also using estimators obtained from censored data when complete data is not known. It is useful to keep track of all the transitions an individual makes before ending in an absorbing state.

Let \(T_{ik} \) represent the time of the \(k^{th} \) transition for individual \(i; i = 1, 2, \ldots, n \) where \(T_{i0} = 0 \) and \(T_{ik} = \infty \) if the \(i^{th} \) individual enters the absorbing state before the \(k^{th} \) transition is made. Let \(C_i \) be the right censoring time for the \(i^{th} \) individual, \(L_i \) be the left truncation time for the \(i^{th} \) individual and \(S_{ik} \) be the state occupied by the \(i^{th} \) individual between times \(T_{i,k-1} \) and \(T_{ik} \).

Let \(T_{1\log X} \) be the time for the last transition for individual \(i \). The collection of all transition times and states occupied by individual \(i \) can be denoted as \(T_{i} = (T_{ik}: k \geq 1) \) and \(s_i = (s_{ik}: k \geq 1) \), respectively. Let \(T_{i} = \min(T_{i}, C_i) \) and let \(\delta_i \) be an indicator of whether the \(i^{th} \) individual was never censored, \(\delta_i = I(C_i > T_i) \).

The Nelson-Aalen estimator for the integrated hazard matrix \(\Lambda \) and the Aalen-Johansen estimator of the state occupation probability matrix of a Markov system are
presented in (3). The counting process and the number at risk for data subject to left truncation and right censoring are estimated as:

\[\hat{N}_j(t) = \sum_{i=1}^{n} \sum_{k \geq t} I(T_{ik} \geq t, C_{ik} \geq t, L_i \leq t, s_k = j, s_{ik} = j) \]

and

\[\hat{P}_j(t) = \sum_{i=1}^{n} \sum_{k \geq t} I(T_{ik} \leq t, C_{ik} \geq t, L_i \leq t, s_k = j) \]

The Nelson-Aalen estimator of the cumulative hazard is given by:

\[\hat{\Lambda}_j(t) = \int_0^t \frac{1}{\hat{N}_{jj}(s)} d\hat{N}_{jj}(s), j \neq j' \]

\[\sum_{j \neq j'} \hat{\Lambda}_{jj}(t) = \hat{\Lambda}(t) \]

where \(\hat{\Lambda}_j(t) \) and \(\hat{\Lambda}(t) \) are J×J matrices. Here \(\hat{\Lambda} = \{\hat{\Lambda}_j\} \) which reduces to simple empirical proportions for the complete data.

For Markov models, there will often be too little empirical basis for estimating freely varying transition intensities between all states for all subgroups, so that more parsimonious regression models are required [4]. The most frequently used regression models in event history analysis have a multiplicative structure with a baseline \(\lambda_{k \rightarrow j}(t) \) transition intensity, assumed common for all individuals (4). For an individual, \(i \), with time fixed covariates \(Z_{ik} = Z_{im} \) the transition intensity is then modeled as:

\[\lambda_{k \rightarrow j}(t) = \lambda_{k \rightarrow j}(t) \exp(\beta_{k \rightarrow j} Z_{ik}) \]

Where the effect of a covariate \(Z_{im} \) is described by factors of proportionality \(\exp(\beta_{k \rightarrow j}) \).

In this equation, the baseline hazard may be completely unspecified as in the Cox proportional hazards model for survival data or it may be assumed to be piecewise constant leading to Poisson regression models (5, 6). Also this notation suggests that separate baseline hazards and regression coefficients are assumed for each possible transition. If that is the case, then the parameters may be estimated by fitting separate Cox or Poisson models for each transition (4). However, more parsimonious models may be obtained by assuming some baseline transition intensities proportional (7, 8) or by assuming some covariates to have the same effect on several transitions (3). In addition, models where the proportional hazards assumption is relaxed may be considered. In the Poisson case this is simply an interaction between the covariate and the remaining parameters, whereas, for the Cox model, the less restrictive model is known as the stratified Cox model.

Results

Simple bi-direction transition model

The first step in a multistate model analysis is to set up the transition matrix that specifies which direct transitions are possible and assigns numbers to the transitions for future reference. Of the 353 patients, 254 stayed in state 1, 228 transited from state 1 to state 2 and 149 of them transited from state 1 to state 3. Also, 304 patients transited from state 2 to state 1, 810 stayed in state 2 and 202 transited from state 2 to state 3.

In multistate models of longitudinal data, usually a process is assumed to be Markovian, that is, the conditional probability distribution of future states depends only on the present state, not on the whole sequence of past events (9). Hence, all the analyses in this article are done under the Markov assumption that future evolution only depends on the current state. R software version 3.1.3 is used for the analysis using the msm package.

State transition intensities

The multistate model with three states labeled 1, 2, and 3 is shown in figure 1 above. At a time \(t \), the individual is in state \(S(t) \). The next state to which the individual moves, and the time of the change, are governed by a set of transition intensities \(q_{ik}(t) \) for each pair of states \(k \) and \(j \), \(j \neq k \). The intensity (hazard) represents the instantaneous risk of moving from state \(k \) to state \(j \). This intensity may depend on the time of the process \(t \), or more generally a set of individual specific explanatory variables \(z \). Therefore,

\[q_{ik}(t) = \lim_{\Delta t \to 0} P[S(t + \Delta t) = j | S(t) = k]) / \Delta t \]

are then elements of a J×J matrix \(Q(t) \) whose rows sum to zero, so that the diagonal entries are defined by \(q_{ik}(t) = \sum_{j \neq k} q_{jk}(t) \) and \(q_{ik}(t) = 0 \) if a transition from state \(k \) to state \(j \) is not allowed. The intensities between states are supposed to be
constant in time (homogeneity assumption) or piecewise constant (10, 11, 12).

For the hypertension data, this transition intensity matrix together with the 95% confidence interval is estimated as shown in table 1. As can be seen from this table, patients in an illness state (state 2) are 2.684 (0.4890/0.1822) times as likely to transit to a healthy state (state 1) as dropout (state 3).

Table 1. Estimated baseline transition intensities

<table>
<thead>
<tr>
<th>Transition states</th>
<th>Baseline intensity</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1 to state 1</td>
<td>-1.0586</td>
<td>(-1.2960, -0.8647)</td>
</tr>
<tr>
<td>State 1 to state 2</td>
<td>1.0586</td>
<td>(0.8647, 1.2960)</td>
</tr>
<tr>
<td>State 2 to state 1</td>
<td>0.4890</td>
<td>(0.3933, 0.6080)</td>
</tr>
<tr>
<td>State 2 to state 2</td>
<td>-0.6712</td>
<td>(-0.7894, -0.5707)</td>
</tr>
<tr>
<td>State 2 to state 3</td>
<td>0.1822</td>
<td>(0.1638, 0.2028)</td>
</tr>
</tbody>
</table>

State occupation probabilities

The state occupation probability is the marginal probability that an individual being in state \(j \) at time \(t \). Let \(p_j(t) = P(S(t)=j) \) denote the state \(j \) occupation probabilities at time \(t \). The process has initial distribution. Where \(S(t) \) is the state occupied by an individual at time \(t \). Let \(p_j(0)=P(S(0)=j) \) be the initial state occupation proportions for state \(j \). The process has initial distribution. For Markov models, these probabilities will depend only on the state at time \(s \), not on what happened before (9). For incomplete data, the state transition probabilities are estimated as

\[
\hat{p}(t) = \sum_{k=1}^{m} \hat{p}_k(0)p_k(t) \tag{7}
\]

where \(\hat{p}(0,t) \) is the (k,j) element of the matrix \(\hat{p}(0,t) \) in equation (4) and \(\hat{p}_k(0) \) is the initial state occupation proportions for state \(k \).

For the hypertension data, the estimated transition probability matrices within a given time \(t = 5, t = 10 \) and \(t = 15 \) months are presented in table 2.

Table 2. Mean Sojourn times and total length of stay

For processes with successive periods of recovery and relapse, it is better also to forecast the total time spent healthy or ill, before dropout. The total length of stay is an estimate of the time in each transient state \(j \) between two future time points \(t_1 \) and \(t_2 \). This defaults to the expected amount of time spent in each state between the start of the process (time 0, the present time) and dropout or a specified future time. This is obtained as

\[
E_j = \int_{t_1}^{t_2} p_{kj}(t) dt
\]

Another important use of multistate models is predicting the probability of survival for patients in different states of disease, for some time \(t \) in the future. This can be obtained directly from the transition probability matrix. Figure 2 is a plot of the expected probability of survival against time, from each transient state. The figure shows that the 18 months survival probability with an illness (state 2) is lower than the survival probability in the healthy status (state 1).

The effect of gender and family history of hypertension

To look at the effect of gender and family history of hypertension on the rates of transition, first the transitional model is estimated with each covariate. For example, the estimated intensities for each category of gender are presented in table 3.
Table 3. Estimated transition intensities by gender

<table>
<thead>
<tr>
<th>Transition states</th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>95% Confidence interval</td>
<td></td>
<td>95% Confidence interval</td>
</tr>
<tr>
<td>State 1 to state 1</td>
<td>-1.2883</td>
<td>(-1.9081, -0.8699)</td>
<td>-0.9802</td>
<td>(-1.2623, -0.7611)</td>
</tr>
<tr>
<td>State 1 to state 2</td>
<td>1.2883</td>
<td>(0.8699, 1.9081)</td>
<td>0.9802</td>
<td>(0.7611, 1.2623)</td>
</tr>
<tr>
<td>State 2 to state 1</td>
<td>0.8011</td>
<td>(0.5295, 1.2120)</td>
<td>0.3286</td>
<td>(0.2484, 0.4345)</td>
</tr>
<tr>
<td>State 2 to state 2</td>
<td>-1.0017</td>
<td>(-1.3982, -0.7176)</td>
<td>-0.4958</td>
<td>(-0.6017, -0.4085)</td>
</tr>
<tr>
<td>State 2 to state 3</td>
<td>0.2006</td>
<td>(0.1719, 0.2341)</td>
<td>0.1672</td>
<td>(0.1441, 0.1940)</td>
</tr>
</tbody>
</table>

Figure 2. Expected probability of survival

The result indicates that females in a healthy state (state 1) are 1.314 (1.2883/0.9802) times as likely to transit to an illness state (state 2) as those male patients. Also, females in an illness state (state 2) are 2.437 (0.8011/0.3286) and 1.199 (0.2006/0.1672) times as likely to transit to a healthy state (state 1) and a dropout state (state 3), respectively, as those male patients.

Again, to examine the effect of family history of hypertension, the proportional intensities model is fitted with family history alone (Table 4). Those patients who did not have family history of hypertension were 0.804 (0.9655/1.2010) times as likely to transit from state 1 to state 2 as compared to those patients who had family history. On the other hand, those patients who did not have family history of hypertension are 0.899 (0.4688/0.5212) and 1.115 (0.1914/0.1716) times as likely to transit from state 2 to state 1 and state 3, respectively, as those who had hypertension history in their family.

Next, to examine the joint effect of gender and family history of hypertension, the proportional intensities model was fitted with both of the covariates. The estimated intensities from this model are presented in Table 5.

Also, the estimated hazard ratios corresponding to each covariate effect of the proportional intensities model fitted with both of the covariates are presented in Table 6.

Discussion

In this study, initially, a simple bidirectional model was fitted with no explanatory variable in order to examine the transition intensities, state occupation probabilities, mean Sojourn times, and total length of stay in a certain state after some time.
Multistate modeling in hypertension data

Table 5. Estimated transition intensities by gender and family history of hypertension

<table>
<thead>
<tr>
<th>Gender</th>
<th>Transition states</th>
<th>Family history of hypertension</th>
<th>Intensity</th>
<th>95% Confidence interval</th>
<th>Intensity</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>State 1 to state 1</td>
<td>-1.1459</td>
<td>(-1.7320, -0.7581)</td>
<td>-1.4759</td>
<td>(-2.2307, -0.9764)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 1 to state 2</td>
<td>1.1459</td>
<td>(0.7581, 1.7320)</td>
<td>1.4759</td>
<td>(0.9152, 2.3798)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 2 to state 1</td>
<td>0.7358</td>
<td>(0.4762, 1.1368)</td>
<td>0.8815</td>
<td>(0.5290, 1.4689)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 2 to state 2</td>
<td>-0.9450</td>
<td>(-1.3304, -0.6713)</td>
<td>-1.0713</td>
<td>(-1.5081, -0.7610)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 2 to state 3</td>
<td>0.2093</td>
<td>(0.1752, 0.2501)</td>
<td>0.1898</td>
<td>(0.1553, 0.2318)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>State 1 to state 1</td>
<td>-0.8858</td>
<td>(-1.1944, -0.6569)</td>
<td>-1.1408</td>
<td>(-1.6675, -0.7805)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 1 to state 2</td>
<td>0.8858</td>
<td>(0.6569, 1.1944)</td>
<td>1.1408</td>
<td>(0.7805, 1.6675)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 2 to state 1</td>
<td>0.3061</td>
<td>(0.2184, 0.4290)</td>
<td>0.3667</td>
<td>(0.2453, 0.5484)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 2 to state 2</td>
<td>-0.4811</td>
<td>(-0.6038, -0.3833)</td>
<td>-0.5254</td>
<td>(-0.7009, -0.3939)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State 2 to state 3</td>
<td>0.1750</td>
<td>(0.1464, 0.2092)</td>
<td>0.1587</td>
<td>(0.1313, 0.1918)</td>
<td></td>
</tr>
</tbody>
</table>

In multistate modeling, survival is defined as not entering the final absorbing state. Hence, it is essential to estimate the mean Sojourn time and total length of stay in a certain state. The mean Sojourn times describe the average period in a single stay in a state. For the hypertension data, the estimated mean Sojourn times in a healthy and illness states are 0.9446 months (95% CI 0.7716-1.1565) and 1.4898 months (95% CI 1.2668-1.7521), respectively. Thus, patients are more likely to stay in an illness state than a healthy state.

To examine the effect of gender and family history of hypertension, the proportional intensities model was first fitted with each covariate and then to determine the joint effect of both covariates, both covariates were fitted in the model. Of the two explanatory variables, it was revealed that only gender has a significant contribution on the rates of transition which is in line with another study (13) that showed that gender has an effect on the prevalence of hypertension.

In this study, the multistate modeling was applied to capture the dynamic stages of a hypertensive patient. The transition rates and transition probabilities are estimated. Life history indicators such as state occupation times (Sojourn times) are estimated 0.94 and 1.49 months in a healthy and illness states, respectively. In addition, each patient spent a total of 3.48 months in a healthy state and 5.49 months with illness. The effects of gender and family history of hypertension were also examined and the result showed that gender has a significant contribution in only one of the possible transition. In particular, given the hypertension history, the hazard of transiting from an illness state to a healthy state for male patients is 0.42 times that of female patients.

Acknowledgments

Thanks to Jimma University for providing the hypertension data used in this study.

References