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 Background & Aim:  The excess hazard rate proposed by Andersen and Vaeth may underestimate 
the long-term excess hazard rate for cancer survival. Zahl explained the phenomenon by continuous 
selection of the most robust individuals after diagnosis. He applied correlated inverse Gaussian and 
gamma frailty models to estimate excess intensity and reached a better estimate of the rate and 
called it the corrected excess hazard. The compound Poisson distribution has more parameters and 
therefore owns more flexibility and includes gamma and inverse Gaussian distributions as special 
cases. Therefore, the aim of this study was to estimate the excess hazard using compound poisson 
frailty model 

Methods & Materials:  Both shared and correlated frailty (CF) variables based on compound 
Poisson distribution were used to model unobserved common covariates. A data set of patients 
diagnosed with localized or regional gastrointestinal tract cancer collected at the Mazandaran 
province of Iran was studied. As registration systems in Iran are so affected by omission and various 
errors, a number of five West Coale- Demeny life tables for men and four for women were 
constructed corresponding to each birth cohort, which was considered as the reference life tables. 
Thus, population-based mortality rates [h1(t)] were simply replaced by the appropriate values of the 
West tables depending on the sex (male or female) and birth cohort of the patient.  

Results: The CF model with unequal variances could best estimate the long-term excess hazard.  

Conclusion: This study advocates the CF models can best estimate the long-term excess hazard 
rates regardless of the distribution of the frailty variable. 
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Introduction 1 

Excess mortality modeling is a statistical tool 
frequently used in population-based studies to 
evaluate the effect of a particular disease on 
mortality, especially when the cause of death is 
known unreliable or unavailable (1, 2). Zahl 
noted that the excess hazard rate proposed by 
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Andersen and Vaeth (3) may underestimate the 
long-term excess hazard rate when comparing to 
the cause-specific mortality of cancer, and he 
explained that the phenomenon may be caused 
by bias of the excess intensity model. Zahl 
discussed that unobserved heterogeneity in 
population may lead to systematic selection after 
diagnosis of patients who are more robust than 
the reference population with whom they are 
compared. This selection process may be the 
main reason leading to bias of underestimating 
the cause-specific mortality rate of cancer (4, 5). 
Zahl used frailty modeling, including inverse 
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Gaussian and gamma frailty models to estimate 
excess hazard in malignant melanoma or colon 
cancer patients (4, 5). 

The compound Poisson distribution was 
introduced by Aalen as a frailty distribution  
(6, 7). The distribution is considered as a hit 
model, where each individual experiences a 
random number of hits causing damage, each of 
a random size. It includes power variance 
function (PVF) distribution, gamma, and inverse 
Gaussian distribution as special cases. The 
model was successfully used by Aalen in 1992 
(7) to model the incidence of marriage of 
women born in Denmark. Hougaard et al. in 
1994 (8) applied the model to diabetic 
nephropathy onset data. Aalen and Tretli in 1999 
(9) applied the compound Poisson distribution to 
testicular cancer data. Haukka et al. in 2003 (10) 
applied the model to schizophrenia data from the 
Finnish population born 1950 to 1968. 

In estimating excess hazard, life tables as the 
common tools comprising mortality information 
of the general population are considered as a 
standard reference and one usually relies on the 
published life tables as the reference mortality 
rate that depends on the characteristics of the 
study patient, such as sex, and age, and year of 
birth. One major limitation of these reference 
life tables is that individuals in a population 
basically come from different cohorts with 
different mortality experiences, whereas 
information of mortality rates of different 
cohorts is as if pooled and combined into a 
single table. This disparity in the pattern of 
mortality across cohorts can severely affect life 
table figures and therefore excess mortality 
measures, which requires an adequate 
adjustment for birth cohort effect during the 
establishment process of life tables. 
Unfortunately, in many developing countries 
including Iran, registration systems either do not 
exist or are so affected by omission and other 
errors. Indeed, there may be little known on the 
actual age pattern of mortality in these 
populations, so as measures based on the data 
that they produce fail to reflect properly either 
levels or trends of mortality. A number of model 
life table systems have been developed for use in 
such cases, but one of the most commonly used 

is the Coale-  Demeny model life tables for 
developing countries (11-13). 

Since a dramatic climb was evident in 
incidence rate of gastrointestinal (GI) tract 
cancers in northern regions of Iran during the past 
a few decades (14, 15), we came to examine the 
long-term excess mortality due to the GI tract 
cancer in Mazandaran, the province with the 
dominating rate of GI tract cancers (15) using the 
shared and correlated compound Poisson frailty 
models. To do so, we constructed distinct life 
tables for different cohorts, each separated by 
gender, using the West Coale- Demeny life table 
model and these tables were considered as the 
population-based mortality rates. 

Compound Poisson Frailty Model 

The compound Poisson distribution was 
introduced by Aalen (1988, 1992) as a frailty 
distribution (6, 7). The distribution can be 
established as the sum of a Poisson-distributed 
number of independent and identical gamma 
distributed random variables. Z = �X� + X� + X� +⋯+ X
; 		if	N > 0,0																																												; if	N = 0,� 

where N is Poisson distributed with the 
expectation υ[N ~ Poisson(υ)], while X1, X2, X3, 
…  are independent and gamma distributed with 
Xi ~ Γ(k, λ). 

Using the following parameterization: υ = −kλ�γ , λ = λ, k = −γ,	 
the Laplace transform of the compound 

Poisson distribution takes the form L��s� = exp "− kγ #�λ + s�� − λ�$% 
Expectation and variance of a compound 

Poisson-distributed random variable Z  are E�Z� = kλ�'�, Var�Z� = k�1 − γ�λ�'� 
Applying the Laplace transform given above, 

the  marginal survival  and hazard function in 
case of a compound Poisson frailty model are as S�t� = exp "−kγ #�λ + Λ�t��� − λ�$% 

and λ/�t� = kλ�t��λ + Λ�t���'� 
Using the constraint EZ = 1, it holds kλ�'� = 1 

J Biostat Epidemiol. 2015; 1(1-2): 1-9.  
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and accordingly Var�Z� = 1 − γλ  
In consequence, after some simplification 

(16) 

0�t� = exp 1− �'��23 451 + 23
�'� Λ�t�6� − 178 

(1) 
and the observed population mortality rate is 

further given by λ/�t� = 9�:�
5�; <3=>?@�:�6=>? (2) 

In case γ = 0 or γ = 0.5 the gamma or inverse 
Gaussian distributions will be yielded as special 
cases. 

A Shared Frailty (SF) Model 

Consider an individual with common frailty Z for 
both dying of cancer and of other causes. The 
individual intensity is then described by (4, 5) λ�t; Z� = zBh��t� + h��t�D, (3) 

where t denotes time from diagnosis to death 
for individual i, and Z is a compound Poisson 
variable. Here, h1(t) is known as the intensity for 
dying of other causes, or the basic mortality rate 
for an individual, and is usually assumed of the 
Gompertz-Makeham form, that is, h1(t) = a + b 
exp[c(t0 + t)], where a, b, and c are the 
parameters of the Gompertz-Makeham 
distribution, and t0 is age at diagnosis; t0 + t is 
the current age. h2(t) is the individual cancer 
intensity, and can be of Weibull form, and is 
interpreted as the force of dying of the cancer 
under study. This model is called a “ shared 
compound Poisson frailty model because the 
frailty variable is common to both intensities. 

The survival function for the population is 
according to Hougaard (17) and Eq. (1) 

s�T� = EXP 1− 1 − γγσ� 451 + σ�1 − γ �H��t�
+ H��t��6� − 178 

in which H1(t) is the cumulative basic 
mortality rate and H2(t) is the cumulative 
individual cancer mortality. 

The observed population mortality is then 

given by using Eq. (2) as 

λ/�t� = h��t� + h��t�
I1 + σ�1 − γ �H��t� + H��t��J�'� 

which may be written as λ/�t� = hK��t� + hK��t� 

LMhK��t� − N=�:�
I�; <3=>?�O=�:�;O3�:��J=>?P M+hK��t� −

N3�:�
I�; <3=>?�O=�:�;O3�:��J=>?PQ  (4) 

where 

hKR�t� = hK R�t�
51 + σ�1 − γ �HR�t��6�'� ;   i = 1,2 

(5) 
As Zahl stated, hK R�t� is denoted the 

population cancer hazard as this function 
describes the force of dying of the cancer under 
study for the study group, and this is what we 
intend to estimate by the excess hazard model. 
The last term in Eq. (4) is the bias of the excess 
intensity model, and this is also a measure of the 
increase in the risk of dying of other causes after 
removing the risk of dying of cancer. The shared 
frailty model will be denoted by SF below. 

A Correlated Compound Poisson Frailty Model 

The shared frailty model has important 
shortcomings. First, an individual may have 
distinct frailties for h1(t) and h2(t). Second, the 
variances of the two frailty variables may differ 
and the difference may be large (6). A suggested 
way of handling this problem is by establishing a 
multivariate distribution by adding up a number 
of independent frailty variables. Here, the 
individual mortality rate is described by (4, 5). λ�t; Z�, Z�� = Z�h��t� + Z�h��t� 

where Zi, i = 1,2, are two mixed compound 
Poisson variables with variances σ�� and σ��, 
respectively. The correlation coefficient between 
the two variables is further denoted by  0 ≤ ρ ≤ min X2=23 , 232=Y. The population intensity 
can be derived from Eq. (8) in Appendix 

J Biostat Epidemiol. 2015; 1(1-2): 1-9.  
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λ/�t� = hK��t� + hK��t�  
− Z��'���2=23 [σ�� \hK��t� − N=�:�

5�; ==>?X2=3O=�:�;233O3�:�Y6=>?] +
σ�� \hK��t� − N3�:�

5�; ==>?X2=3O=�:�;233O3�:�Y6=>?]^  

 (6) 
where hK R�t� = N_�:�

`�; <_3=>?�O_�:��a=>? ; 			i = 1,2; (7)  

Once more, the last term in Eq. (6) is the bias 
when the two frailty variables are correlated. hK��t�	can be estimated indirectly and the 
estimate is as Zahl stated the   corrected excess 
hazard  

We have that Eq. (6) equals Eq. (4), when  
ρ = 1 and Z1 and Z2 have equal variances  
(σ1 = σ2). 

When σ1 = σ2, this model will be denoted by 
CF1, otherwise this model is denoted by CF2. 

Cancer Survival 

Estimation 
The population cancer hazard, hK��t�, is 
estimated indirectly by substituting a known 
function for h1(t) in the likelihood for the shared 
and correlated frailty (CF) models, a method 
which “ does not require exact information about 
the cause of death.  Furthermore, this indirect 
method reduces the number of parameters to be 
estimated. In this method, we simply substitute 
the population mortality rate for h1(t), assuming 
this equal to the individual risk of dying from 
diseases other than the cancer under study. The 
individual cancer mortality h2(t) is assumed of 
Weibull form. The parameters of the frailty 
distribution and h2(t) are estimated by the 
maximum likelihood method. 
 
Creating the West life table model 
Since in many countries including Iran, death 
registration is incomplete or nonexistent, 
adequate life tables cannot be calculated from 
the data available. Model life tables have been 
developed for use in such cases. The Coale-

Demeny model life tables are amongst the most 
commonly used models and consist of four sets 
or models, each representing a distinct mortality 
patterns, including North, South, East, and West. 
As the West pattern is considered to represent 
the most general mortality pattern, Coale and 
Demeny recommended its use when reliable 
information is not available for choosing one of 
the other patterns (13). Plus, our previous 
experience reveals that the West life table model 
can best estimate the actual age pattern of 
mortality of our population (18). Having the 
measure of infant mortality rate (IMR) for each 
year of birth, defined as the number of newborns 
dying under a year of age divided by the number 
of live births that year, Coale- Demeny model 
life tables can be constructed showing mortality 
rate for single years of age 0- 100. Concerning 
the Mazandaran province, IMR was available for 
birth years after 1965; therefore, linear 
extrapolation methods were invoked to 
approximate IMR for birth years before 1965. 
Because the study patients came from different 
birth cohorts with experiencing different 
mortality patterns, men were classified into five 
distinct cohorts of 1911-1920, 1921- 1930, 
1931- 1940, 1941- 1950, and 1951- 1961, and 
women into four cohorts of 1921- 1930, 1931-
1940, 1941- 1950, and 1951- 1961. It should be 
noted that to establish life tables, an average 
IMR was obtained for each cohort and according 
to gender. As such a number of five West life 
tables for men and four tables for women were 
constructed for Mazandaran province of Iran, 
corresponding to each birth cohort. Once the 
West life tables were established, population-
based mortality rates [h1(t)] were simply 
replaced by the appropriate values of the West 
tables depending on the sex (male or female) 
and birth cohort of the patient. 
 
Gastrointestinal tract cancer 
A data set of 484 patients diagnosed with 
localized or regional GI tract cancer collected at 
the Babol cancer registration in Mazandaran 
province of Iran during the years 1990- 1991 was 
studied. The sample contained 359 cases with 
esophageal, 110 with stomach, and 15 with 
colorectal cancers. Patients were followed-up for 
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a maximum period of 15 years by the year 2006. 
The study was approved by the Ethics Committee 
of Tehran University of Medical Sciences.  

Results 

The mean age of the patients was 58.26 ± 10.90 
(mean ± SD) years (range 40- 90). Males 
accounted for 66.3% and females 33.7% of GI 
tract cancers. The Kaplan- Meier method of 
survival analysis estimated that the survival rates 
in 5, 10, and 15 years following diagnosis were 
16.9%, 13.8%, and 6.2%, respectively. The 
overall patient survival rate was not statistically 
different across the three subgroups of patients 
with esophageal, stomach, and colorectal 
cancers (log-rank test; P = 0.213). Owing to 
small sample size, especially the few number of 
patients with colorectal cancer, we analyzed the 
whole sample as patients with GI tract cancer, 

and did not carry out distinct analysis for each 
type of GI cancer. 

Table 1 presents parameters for the shared 
and CF models. The individual cancer hazard 
h2(t) was assumed of the two-parameter Weibull 
form. As shown in table, in all models β was 
estimated to be more than 1 indicating an 
increasing individual cancer hazard h2(t) over 
the course of study. The log-likelihoods are 
almost identical for all models, but the 
correlation coefficients for CF1 and CF2 models 
are different. The correlation coefficients are 
positive meaning that the risk of dying of cancer 
is correlated to the risk of dying of other causes. 
The frailty parameters are estimated with 
inflated standard errors in all models, which may 
be reduced by studying larger datasets. In figure 
1, we present the integrated excess intensity 
(traditional excess hazard) comparing with the 
integrated corrected excess hazards.  

 
Table 1. Estimated parameters for 484 patients with GI tract cancer diagnosed in Mazandaran province of Iran, and according to 
the West Coale–Demeny regional life table model (based on compound Poisson frailty distribution) 

Model Parameters of Weibull distribution Parameters of frailty distribution −ln(L) 
β η Σ σ١ σ٢ ρ 

SF 1.25 (0.39) 0.26 (0.09) 1.95 (0.51) - - - 521.07 
CF1 1.19 (0.27) 0.20 (0.06) 1.92 (0.43) - - 0.55 (0.47) 520.61 
CF2 1.13 (0.25) 0.19 (0.07) - 1.80 (0.59) 2.21 (0.94) 0.75 (0.66) 519.84 

GI: Gastrointestinal, SF: Shared frailty model, CF1: Correlated frailty model with equal variances, CF2: Correlated frailty model with unequal 
variances. Standard errors are given in parentheses 
 

 
Figure 1. Integrated corrected excess hazards compared with integrated 
conventional excess hazard of patients with gastrointestinal tract cancer in 
Mazandaran province (based on compound Poisson frailty distribution). 
                 : Shared frailty model (SF model),             Correlated frailty model 
with equal variances (CF1 model),                : Correlated frailty model with 
unequal variances (CF2 model),               : Conventional excess hazard 

J Biostat Epidemiol. 2015; 1(1-2): 1-9.  
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Table 2. Estimated cumulative excess mortality for 484 patients with GI tract cancer diagnosed 
in Mazandaran province of Iran according to shared and correlated frailty models and based on 
the compound Poisson frailty distribution 

Model Years on the study 
2 5 10 15 

Conventional excess hazard 0.30 0.32 0.37 0.51 
Compound Poisson frailty model     
Shared 0.46 0.59 0.78 0.90 
Correlated with equal variances 0.42 0.56 0.75 0.84 
Correlated with unequal variances 0.36 0.44 0.55 0.62 

GI: Gastrointestinal 
 

As can be seen, after 2 years the difference 
increases. The corrected excess hazard based on 
the CF2 model gives the best estimate of the 
long-term cause-specific mortality, while the SF 
and CF1 models give the worst fit. Modeling of 
the heterogeneity, especially by distinct 
variances for Z1 and Z2, is an essential way for 
capturing the selection phenomenon. 

Table 2 depicts the estimated cumulative 
excess mortality both traditional and corrected 
counterparts for 484 patients with GI tract 
cancer diagnosed in Mazandaran province of 
Iran. It is evident that the corrected estimates 
differ from the traditional estimates and the 
difference increases, especially after 2 years 
indicating the phenomenon of systematic 
selection of robust individuals after diagnosis 
(that means patients with low frailty) may 
probably be taken place. 

Discussion  

Here, we tried both shared and correlated frailty 
models based on compound Poisson distribution 
for estimating long-term excess hazard rate. An 
interesting interpretation of this distribution is 
that individuals may come from different 
backgrounds and cultures and are exposed to 
different environmental effects which cause each 
individual experiences several hits causing 
damage, so as the number of hits causing 
damage in an individual are random and each of 
a random size. The effect of these hits 
accumulates over time and increases individual 
frailty (6, 7). Furthermore, because there are 
more parameters in the distribution compared to 
gamma and inverse Gaussian, it will increase the 
flexibility of the model. That is why we found it 
relevant to model excess hazard rate. 

Even though, the individual cancer hazard 
was parameterized for getting small standard 
errors and there were more parameters in the 
model when compared to former competing 
risks models (4, 5), hence naturally leading to 
more flexibility of the model, the correlation 
coefficients and the variances were not 
estimated with small standard errors which 
might be reduced by studying larger datasets. 

Heterogeneity as the responsible for 
systematic selection process of robust 
individuals after diagnosis may be happened in 
our study. A considerable number of deaths (366 
deaths, i.e., 75.6% of the total sample size) 
occurred in the first early years of diagnosis 
showing those patients who were most frail or 
those who were diagnosed in higher stages of 
the disease would die earlier than the others and, 
in consequence, systematic selection of robust 
individuals after diagnosis (that means patients 
with low frailty) would have been probably 
taken place. 

It should also be alluded that we observed a 
huge number of deaths in the first 2 years of 
diagnosis so a dramatic climb was observed in 
excess mortality during the period in all models, 
as figure 1 shows. This might be expected 
because patients with GI tract cancers are 
generally discovered at a late stage of disease 
when cancer is difficult to cure successfully at 
this stage (19, 20). 

Our secondary focus was directed toward 
adjustment for confounding effects of different 
mortality rates across different cohorts on life 
table figures, by constructing the West Coale-
Demeny model life table. As was pointed out 
registration systems in Iran are so affected by 
omission and various errors; therefore, there 
may be little known on the actual age pattern of 
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mortality in our population. The basis of the 
Coale- Demeny life table system is the mortality 
patterns exhibited in 192 actual life tables by 
sex. Analysis of 192 life tables revealed four age 
patterns of mortality labeled North, South, East, 
and West. The West pattern is, however, derived 
from the largest set of observed life tables (130) 
and is considered to represent the most general 
mortality pattern. They recommended its use 
when the reliability of information is under 
question for choosing a more deserved model 
(12, 13, 21). 

Here, we address how to correct the excess 
hazard rates when there is unobserved correlated 
heterogeneity. This study advocates the correlated 
frailty models with unequal variances can best 
estimate the long-term excess hazard regardless 
of the distribution of the frailty variable. 
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Appendix 

Let k1, k2, and k3 be some real positive variables 
and let Y1, Y2, and Y3 be independently 
compound Poisson distributed random variables 
with Y1 ~ cP(γ, k1, λ), Y2 ~ cP(γ, k2, λ), and Y3 ~ 
cP(γ, k3, λ). Thus, E�YR� = kRλ�'�, Var�YR� = kR�1 − γ�λ�'�;  
i=1,2 

The frailty variables Z1 and Z2 can be defined 
as a set of the three above independent compound 
Poisson variables using a similar additive 
structure for the frailties as in gamma and inverse 
Gaussian models Z� = Y� + Y� ⇒ E�Z��= �k� + k��λ�'�, Var�Z��= �k� + k���1 − γ�λ�'� Z� = α�Y� + Y�� ⇒ E�Z��= α�k� + k��λ�'�, Var�Z��= α��k� + k���1 − γ�λ�'� 
where α is a scaling parameter (a positive real 
number). 

Furthermore, the following relations are 
assumed: E�Z�� = �k� + k��λ�'� = 1, E�Z�� =α�k� + k��λ�'� = 1 , 

which leads to Var�Z�� = 1 − γλ , Var�Z�� = α �1 − γ�λ 	 
The two above equations result in α = 2332=3 The 

covariance between Z1 and Z2 is given by Cov�Z�, Z�� = E�Z�Z�� − E�Z��E�Z�� 
In order to derive an expression for the first 

term on the right-hand side of the above equation 
we require E�Y��� = Var�Y�� + BE�Y��D� = k��1 − γ�λ�'� + k 

We then have for the first term on the right-
hand side of the covariance equation E�Z�Z�� = EB�Y� + Y�� × αD�Y� + Y��  = αEBY�� + Y�Y� + Y�Y� + Y�Y�D 	= αBk��1 − γ�λγ−2 + k��λ2γ−2 +k�k�λ2γ−2 + k�k�λ2γ−2 + k�k�λ2γ−2D  = αBk��1 − γ�λγ−2 + �k�+k���k� +k��λ2γ−2D  = αBk��1 − γ�λγ−2 + α'�D  = αBk��1 − γ�λγ−2 + 1D  E�Z��E�Z�� = 1 

Furthermore, Z1 and Z2 are correlated since 
they contain the common part Y1 with a 
correlation coefficient: ρ = ijk��=,�3�lmno	��=�mno��3�KKKKKKKKKKKKKKKKKKKKKKK =pq=��'��9?>3rB�q=;q3���'��9?>3DBp3�q=;qs���'��9?>3DKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK =q=r�q=;q3�;�q=;qs�KKKKKKKKKKKKKKKKKKKKKKKKK  

Because the k-parameters are all assumed 
non-negative, it follows that the range of the 
correlation between frailties depends on the 
values of σ1 and σ2: 0 ≤ ρ ≤ min Iσ�σ� , σ�σ�J 

We can derive the unconditional model, 
applying the Laplace transform of compound 
Poisson distributed random variables. The 
population survival probability becomes S�t� = t t t expB−�y� + y��H��t� −vwvwvwα�y� + y��H��t�D. f�y�� . f�y��. f�y��dy�dy�dy�  = exp z− q=� #�λ + H��t� + αH��t��� − λ�${ ×exp z− q3� |}λ + H��t�~� − λ��{ ×exp z− qs� |}λ + αH��t�~� − λ��{  

The following relations are hold: λ = �1 − γ�σ�� , α = σ��σ�� 

k� = ρ 2=23 X�'�2=3 Y�'�, 

k� = X�'�2=3 Y�'� X1 − ρ 2=23Y, 

k� = 2=23 X�'�2=3 Y�'� X2=23 − ρY, 
For each of the net survival functions 

(according to Eq. (1)) SR�t� = exp �− �'��2=3 "X1 + 2=3�'�H��t�Y� − 1%�; 
In consequence S(t) can be rewritten as 

S�t� = S��t��'Z<=<3 × S��t��'Z<=<3 × exp �− Z��'���2=23 �1 −
X1 − �2=3�'� ln�S��t��Y=? + X1 − �233�'� ln�S��t��Y=? − 1���.
 (8) 
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