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Introduction: Little attention has been paid to modeling count data with the geometric distribution. 
There are many real-life phenomena with a constant probability of first success. However, in practice, the 
probability of the first success may vary, making simple geometric models unsuitable for modeling such 
data. One can assume one of many continuous distributions for modeling the probability of first success 
with the parameter space [0, 1]. In this respect Beta distribution defined on the standard unit interval [0,1] is 
the most useful distribution due to its ability to accommodate a wide range of shapes. Thus, in this paper, by 
mixing Beta and geometric distribution, we developed a Beta-geometric distribution for modeling the count 
data through application to real-life count data on time to the first antenatal care (ANC) visit. 
Methods: The estimation of the distribution parameters using the method of moments, maximum likelihood 
estimation (MLE) method, and Bayesian estimation approach are provided. Based on the Beta-geometric 
distribution, we developed a new Beta-geometric regression model for analyzing count data that follow the 
geometric distribution. The goodness of fit of the derived model has been tested using real data on time to 
the first ANC visit.
Results: Beta-geometric distribution has a simple form for its probability mass function (pmf), and is 
flexible in capturing both underdispersion and overdispersion that may present in count data.  It was found 
that the proposed Beta-geometric regression model fit the count data on the first ANC visit better than 
simple geometric distribution or Negative Binomial distribution.
Conclusion: Unlike the Poisson or Negative Binomial distribution, Beta-geometric distribution does not 
need an additional parameter to accommodate underdispersion or overdispersion and thus could be a flexible 
choice for analyzing any count data. The goodness of fit test of the Beta-geometric model provides better 
fitting of the model to real data on time to first ANC visit than geometric or Negative binomial models.
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Introduction  

Count variable, which takes on only 
discrete values, intrinsically non-normal, 
heteroskedastic, right-skewed, and have a 
variance that increases with the mean,1,2 and 
thus cannot be modeled with the classical 
statistical techniques requiring normality and 
homoscedasticity assumptions. For modeling 
count data, the most commonly used model 
is the Poisson model or its various modified 
form under Generalized Linear Modeling 
approach.3-5 However, the most serious 
limitation of the Poisson model is the imposed 
equality of conditional mean and variance of 
the response variable which is termed as equi-
dispersion. In reality, count data with equal 
mean and variance is very rare. Violation of 
equi-dispersion condition have similar effect 
as the violation of heteroskedasticity in linear 
regression model. Inferences made on the basis 
of assumption of equi-dispersion for data which 
actually over-dispersed or under-dispersed 
could be misleading, despite the fact that the 
parameter can still be estimated consistently.6 
If over-dispersion or under-dispersion is not 
taken into consideration while analyzing data, 
estimates of the standard errors under equi-
dispersion will be  small, and thus the test 
statistics for the parameter estimates will be 
too large, significance will be overestimated, 
and confidence limits will be too small.7 To 
overcome the problem of over-dispersion, 
Negative Binomial (NB), generalized Poisson, 
zero-inflated Poisson, or hurdle models are 
often suggested.2,8,9

Although geometric distribution, which is 
a special case of NB distribution, and also 
belongs to the family of discrete distributions, 
little attention has been paid in modeling count 

data with geometric distribution. The geometric 
distribution is a probability distribution that is 
used to model the probability of experiencing a 
certain amount of failures before experiencing 
the first success in a series of Bernoulli 
trials. Since many characterizations of the 
geometric distribution are analogous to the 
characterization of the exponential distribution, 
geometric distribution is considered as the 
discrete analogue of the continuous exponential 
distribution.10 The geometric distribution 
has been used extensively in the literature 
in modeling the distribution of the lengths of 
waiting times.11-15 

In the area of women’s reproductive health 
care, a variable of primary interest is the   time-
to-first antenatal care (ANC) visit, which is 
a random variable that counts the number of 
months (or trials) to have the first ANC visit (or 
success) in a series of independent Bernoulli 
trials, and thus follow the characteristics of a 
geometric distribution. Antenatal care (ANC) 
is the routine care of pregnant women starting 
from the date of conception to onset of delivery 
to reduce the risk of adverse  pregnancy 
outcomes and improve the maternal and 
child health and their survival.10,11 According 
to the new guidelines of the World Health 
Organization (WHO), every mother should 
have at least eight ANC visits during the 
pregnancy period.16 It also emphasizes that all 
pregnant mothers should start ANC visit as soon 
as possible, preferably within the first trimester 
of pregnancy. Timing of first ANC visit has 
been observed to predict the compliance of 
full coverage of WHO recommended contents 
of care.16  Over the period, a good number of 
studies have been conducted on time to first 
ANC visits. However, most of the earlier studies 
considered the timing of first ANC visit as a 
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categorical outcome variable by dichotomizing 
it as early initiation or late initiation, and thus 
applied logistic regression models to find the 
predictors of timing of first ANC visits.17-20 

Besides, different studies used different cutoff 
point to dichotomies the timing of first ANC 
visits as early or late attendance. Since, early 
or late initiation of ANC visit is not a natural 
category of ANC visit (e.g. alive or dead is 
a natural classification of survival status), 
analysis using such categories for a count 
variable might deviate from reality and might 
suffer from the risk of misclassification of the 
sample objects. This type of classification put 
all observed values of the exposure variable 
(i.e. time to first ANC visits) into two exposure 
levels. This intern modifies a real distribution, 
mostly a skewed distribution, into a binomial 
distribution, which might have some 
consequences in parametric estimation. The 
loss of information from dichotomizing a count 
or continuous variable has been documented by 
many studies.21-25 In a recent study, Sroka and 
Nagaraja26 demonstrated that if the count data 
is analyzed directly using generalized regression 
model approach, the confidence intervals for 
the odds ratio could be up to 64% shorter (or 
36% as wide) compared to if the data had 
been dichotomized and analyzed using logistic 
regression. Since the distributional assumption 
plays critical role in statistical inference,27 it is 
important to choose the appropriate distribution 
for modeling the variables under consideration. 
For instance, if a real life data that follow the 
physical process of a particular distribution, 
but other distribution may fit it reasonably, 
even then one should use the distribution that 
follow the physical process. There is a dearth 
of literature on the use of geometric regression 
for analyzing count data. 

In a recent study, Al-Balushi and Islam28 

illustrated the suitability of the geometric 
regression model for analyzing the count data 
on time to first ANC visit, and concluded that 
the geometric regression model may provide 
a flexible model for fitting count data sets 
which may present over-dispersion or under-
dispersion. They further observed that the 
geometric  model could be  an alternative model 
to the widely used  Poisson  model for modeling 
the count data in the presence of over or under 
dispersion.  However, the geometric regression 
model used by Al-Balushi and Islam28 for 
modeling the count data on first antenatal care 
(ANC) visits has a limitation that it was based 
on assumption that   the probability of first 
success or first ANC visit (p) as constant for 
all women during pregnancy period. In reality 
the probability of first ANC visit (p) varies 
from woman to woman, depending on their 
demographic, social, economic or behavioral 
characteristics. In such situation, the results of 
the geometric model under constant probability 
of first success could be biased.  It is, therefore, 
important to develop model assuming that the 
probability of first success vary from woman 
to woman according to some underlying 
distribution. Many continuous distributions 
can be assumed for varying probability of 
first success that lies in the parameter space 
[0, 1]. However, the most appropriate and 
convenient distribution  could be the beta 
distribution, because it is the proper conjugate 
distribution for the geometric model,29 and it 
has flexibility in accommodating wide range 
of shape. It then produces a mixed distribution, 
namely the beta-geometric distribution. There 
are some analogous applications of beta-
geometric distribution in studying the human 
reproduction.30-32 For example, Weinberg 
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and Gladen33 (1986) used beta-geometric 
distribution for modeling human fecundability – 
the monthly probability of conception. Because 
of flexible nature of beta distribution, a good 
number of beta mixture of other distributions 
has been developed for some other analogous 
applications.34-37   
In recent times, researchers from various 
academic spheres are increasingly attempting 
to develop new probability distributions 
by applying mixture or compound mixture 
techniques for modeling of various complex real-
life phenomena. Some of the new probability 
distributions are quite flexible in that they 
result in some other well-defined probability 
distributions when their parameter(s) are set 
to certain values. For instance, using mixed 
Poisson and mixed NB distributions, Zamani, 
Ismail & Shekari38 developed new weighted 
negative binomial-Poisson Lindley distribution 
for modeling over disperse count data. 
Eugene et al.39 introduced the beta-generated 
family of univariate continuous distributions. 
Following Eugene et al.,39 many other authors 
have defined a number of the beta-generated 
distributions, using various distribution 
function of the outcome variable Y, such as beta-
Gumbel distribution by Nadarajah and Kotz,40 
beta-Weibull distribution by Famoye et al.,41 
beta-gamma distribution by Kong et al.,42 beta-
Pareto distribution by Akinsete et al.43 (2008), 
beta-Cauchy distribution by Alshawarbeh et 
al.44

In this paper, a beta-geometric regression is 
proposed for modeling count data on time to 
first ANC visits to capture the real life situation 
of variation of the parameter p of the geometric 
distribution. This is an extension of the simple 
geometric regression used by Al-Balushi and 
Islam28 for analysis the count data on time to 

first ANC visits by relaxing the assumption of 
constant probability of first ANC visit by all 
women. We applied the beta-geometric model 
on real data. The statistical properties of the 
beta-geometric distribution are discussed. The 
estimation of the parameters of the distribution 
using method of moments, maximum 
likelihood estimation (MLE) method and 
Bayesian estimation approach are provided. 
The goodness of fit of the derived model has 
been tested. A generalized linear model (GLM) 
based on the beta-geometric distribution has 
been developed and applied for identifying the 
significant predictor of the response variable.

Methods

The Geometric distribution and its 
characteristics

Geometric distribution is defined as the 
distribution of the number of trials until the first 
occurrence of the k-th consecutive success.45  
Let the response variable Yi (i=1, 2, ….) is a 
count of the number of trials needed to get the 
first success. If all the trails have the constant 
probability of first success, say p, then the 
probability distribution of the count variable Yi 
can be modeled using the geometric distribution, 
with probability mass function (pmf),
 ( 1)( | ) (1 ) , 1, 2, ;0 1.... ...yP Y y p p p y p−= = − = < <

                                                                     (1)
The cumulative distribution function or cdf of 
the geometric distribution is given by

  ( ) ( ) , 1,  2,  3, .1 1  ( ) y
YF y P Y y p y= ≤ − − = ……=

Figure 1 depicts the nature and behavior of 
geometric distribution for varying values of 
its parameter p. It is evident from the figure 1 
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that the probability of first success is almost 
constant for higher mean of the count and 
negative exponential for smaller mean values.

Figure 1. The pmf plot of Geometric distribution 
for varying values of the parameter p

The mean and variance of the distribution given 
in (1) are respectively,  

1( | )E Y p
p

µ= =                       
and 

2

1( | ) ( 1)pVar Y p
p

µ µ−
= = −

This indicates that the variance of the geometric 
distribution is a function of its mean.
The dispersion index is given as

                                      .                           (2)( ) 1 1 1
( )

Var Y p
E Y p p

−
= = −

 
It is evident from (2) that the dispersion index 
of geometric distribution depends on the value 
of the parameter p. If p=0.5, the distribution 
is equi-dispersed (i.e. mean = variance);  if p 
<0.5, the distribution is over-dispersed (i.e. 
variance > mean), and if  p > 0.5 then the 
distribution is under-dispersed (i.e. variance 
< mean). This implies that the geometric 
distribution can capture both under-dispersion 
and overdispersion in data, while NB model 

generically deals with over dispersion.2 An 
added advantage of the geometric distribution 
in relation to the NB and generalized Poisson  
distribution is that it involves single parameter 
and no additional (dispersion) parameter is 
necessary to accommodate over or under-
dispersion.
The Geometric distribution is the only 
discrete distribution with non-negative integer 
support that can be characterized as having an 
interesting property, known as “memory-less” 
or “Markovian” property.10 For integers s>t, it 
can be shown that ( | ) ( ).P Y s Y t P Y s t> > = > −
The geometric distribution is sometimes used 
to model “lifetimes” or “time until failure” 
of an object. Thus it is the simplest type of 
discrete waiting time distribution. Many other 
characteristics may be seen in Feller.46 Many 
works have been done on characterization of 
the Geometric distribution such as Ferguson,47 

Arnold,48 Gultekin and Bairamov,49 while 
Tripathi et al.50 provided many generalization 
of the Geometric distribution.  

Beta-geometric distribution

In practice, the probability of first success, p, 
may vary from observation to observation, 
according to some underlying distribution. As 
p lies between 0 and 1, the most appropriate 
and convenient distribution for p is the beta 
distribution, because it is the proper conjugate 
distribution for the geometric model.29 

Let p follow a beta distribution with parameter 
α and γ, then the probability density function 
(pdf) of p is given by:

                                                   0<p<1.     (3)
1 1(1 )( | , )
( , )

p pf p
B

α γ

α γ
α γ

− −−
=

where, 
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                                   =  
1 1 1

0
(1 )t t dtα γ− −−∫

( )( , )
( )

B α γα γ
α γ

Γ Γ
=
Γ +

The mean and variance of the beta random 
variable p are

αµ
α γ

=
+

 , and   
( ) ( )

2
2 1
αγσ

α γ α γ
=

+ + +
respectively.
Assuming that the parameter p in equation 
(1) follow a Beta distribution, we obtain a 
mixed distribution, namely the beta-geometric 
distribution and its pmf is given by

P(y,α,γ) = ( )
( )
1, 1

   , 1, 2, 3,  
,

B y
y

B
α γ

α γ
+ + −

=    (3)

The details about derivation of the beta-
geometric distribution and other related proofs 
may be seen in the Appendix.

Since B(α,γ)  , 

then the above pmf can be rewritten as:

                                                              , 

y=1,2,3……..; α,γ>0                                 (4)

As a special case, if γ = 1, then the beta-
geometric distribution reduces to the Yule-
distribution.33  Moreover, the formula 

                                          
 leads to another form of the pmf:

( ) ( ) ( )
( ) ( )

2 ! 1 !
; , .  

1 ! 1 !
y

P y
y

α γ α γ
α γ

α γ γ
+ − + −

=
+ + − −

                                                                  (5)

A re-parameterization proposed by Griffiths36 
yields the following expression

                                                       , y=1, 2, …
[ ]
[ ]

2

1
1

1

1
( ; , )

1

y

r
y

r

r
P Y y

r

π π θ
π θ

θ

−

=
−

=

− +
= =

+
∏
∏

                                                                    (5)
where απ

α γ
=

+
 and 

1θ
α γ

=
+

 are interpreted 
as the mean parameter and the shape parameter, 
respectively. Next, we derive the mean and 
variance of the beta-geometric distribution.
The plots of the pmf of the Beta-geometric 
distribution for various values of α and γ are 
given in Figure 2 below.

Mean and variance of the Beta-Geometric 
distribution

The mean and the variance of beta-geometric 
distribution are given by: 

( ) ( )
( )

1,
,

B
E Y

B
α γ
α γ
−

=   = 
1

1
α γ
α
+ −
−

  for    α>1. (7)

( ) ( )
( ) ( )2

1
 

1 2
Var Y

αγ α γ

α α

+ −
=

− −      

, or  under reparameterization,  

( ) ( )( )
( ) ( )2

1 1
  ,  2 , 2

2
V Y for

π π θ
π θ α

π θ π θ

− −
= > >

− −

                                                                   (8)

Estimation of the parameters α and γ
 
For estimating the parameters of the Beta-
geometric model, we used three well known 
methods of estimations. These are: method of 
moments, maximum likelihood and Bayesian 
estimation. 
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Method of moments

The method of moments consists of calculating 
a few raw moments of the observed sample 
values and equating them to the corresponding 
estimates of the population moments, thus 
getting as many equations as are needed to 
solve for the unknown parameters. 
Let y1, y2, …….,yn  be a random sample n 
observation on time to first ANC visits which 
follow beta-geometric distribution. Then the 
rth sample raw moments is defined as

1
/

n
r

r i
i

m y n
=

=∑
The corresponding rth population moments 
( )rµ of the distribution is defined as

Figure 2. The pmf plot of Beta-geometric distribution for varying values of the parameter α and γ.

( ) ( )r r
r E Y Y f Y dyµ = = ∫

    
                                            .

Since we have two unknown parameters, we 
need to equate, 1 1mµ =  and  2 2mµ =  . 
Thus we have

( )
( )1 1

1
1

m
α γ

µ
α
+ −

= =
−

( )( )
( )( )2 2

1 2
 

1 2
m

α γ α γ
µ

α α
+ − + −

= =
− −

Now solving these two equations, we derive 
the method of moment estimate for α and y as 
follows:
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2

1 1 2
2

1 2

ˆ  2 .  m m m
m m

α + −
=

−
                   (10)

2
1 1 2 1 2

2
1 2

ˆ .m m m m m
m m

γ − − +
=

−
                 (11)

        Method of moments is the oldest and easiest 
method of point estimation of the population 
parameters, yielding almost always some sort 
of estimate, and therefore considered as a good 
starting point. However, it lacks some desirable 
optimal properties of a good estimator. In this 
respect, most statistician prefer maximum 
likelihood method of estimation, because it 
satisfies most of the optimal properties of a 
good estimator such as, minimum variance, 
unbiasedness, consistency, etc. 

Maximum Likelihood Method

Maximum likelihood estimates (MLE) of 
the parameters are obtained by finding the 
parameter values that maximize the likelihood 
function which is define as    

                                          .( ) ( )
1

 ,
n

i
i

L f y yθ θ
=

=∏
The likelihood function of the beta-geometric 
distribution is given by:

( ) ( )
( )1

1, 1
; , . 

,

n
i

i

B y
L y

B
α γ

α γ
α γ=

+ + −
=∏

                                                                   (12)

To make it simpler for finding the derivatives, 
we can use the re-parameterized form of the 
beta-geometric distribution as given in (11).
Then the likelihood function is given as:

[ ]
[ ]

1

1

1
1

1 ( 1)
( ; , )

1 ( 1)

i

i

y
n

n r
y

i
r

r
L y

r

π θ
θ π π

θ

−

=

=
=

− + −
=

+ −
∏∏
∏

and the corresponding log-likelihood can be 
written as

 (13)

The maximum likelihood estimates π̂  and      
θ̂ , and thus α̂   and β̂  are obtained by 
solving the maximum likelihood estimating 
equations   

0l
π
∂

=
∂

 and     0l
θ
∂

=
∂

   simultaneously.

We have
1

1 1

1
1 ( 1)

iyn

i r

l n
rπ π π θ

−

= =

 ∂
= −  ∂ − + − 

∑ ∑ =0.

                                                              (14)
and

1

1 1 1

1 1
1 ( 1) 1 ( 1)

i iy yn

i r r

l r r
r rθ π θ θ

−

= = =

 ∂ − −
= − ∂ − + − + − 
∑ ∑ ∑

                                                             (15)

It is to be noted that there is no closed form 
solution for the above two equations. However, 
we can use some numerical iterative procedures 
such as the Newton-Raphson method or a 
numerical subroutine of the R-Environment to 
obtain the MLE of parameters. 
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Although the method of maximum likelihood is 
often the estimation method that mathematical 
statisticians prefer because of its good statistical 
property, sometimes complications arise in 
its use because the equation(s) obtained from 

0l
θ
∂

=
∂

may be difficult to solve, as we have 
seen incase of our equations (14) and (15). 
In both method of moments and maximum 
likelihood estimation method, probabilities 
are interpreted as relative frequencies obtained 
from a sample. There is another approach 
in statistical inference, called the Bayesian 
approach, that combines sample information 
with another prior information.

Bayesian Estimation

In Bayesian approach, instead of considering 
the parameter of interest as constant, it is 
assumed as random variable with a specific 
distribution, called prior density function. 
Then a posterior density function is obtained 
from the joint density function of the sample 
observations and the prior density function. 
Finally, the mean of the posterior distribution is 
taken as the estimate of the parameter.
To obtain the Bayesian estimate of the 
parameters, we first derived the posterior 
distribution, assuming a beta prior distribution 
of p, because beta distribution is the proper 
conjugate of geometric model within parameter 
space [0, 1]. Following the Bayes’ rule the 
posterior density function is given by 

( ) ( )
( )

( ) ( )
( )

, |
 |  , 

f p y f y p f p
f p y

f y f y
= =

where  f(p,y)  is the joint distribution, f(p) is the 
prior which is the beta distribution and f(y) is 
the marginal distribution of the variable which 
is geometric distribution. 

According to the de Finetti’s theorem, we can 
rewrite the posterior density function as:

 ( ) ( ) ( )
( ) ( )

1

0

|  
 | , 

|    

L y p f p
f p y

L y p f p dp
=
∫

  (16)

where L(y|p) is the likelihood function of the data 
distribution, and in our case it is the likelihood 
function of the geometric distribution. After 
applying the above theorem, we have

( ) ( ) ( )
( )1

11
1 1

, 1
,

n

i
i

yn p p
f p y p p

B

γα

α γ
=

−−
− −∑= − ×

( )
( )

1
1 11 1

 .
,

n
ii

ynp p
B

γα

α γ

=
+ − −+ − ∑−

=

The posterior function is evaluated to be as 
follows:

( ) ( )
( )

1
1 11 1

 |  
,

n
ii

ynp p
f p y

B

γα

α γ

=
+ − −+ − ∑−

=

( )
( )

1
, 1

  
,

n
ii

B n y

B

α γ

α γ
=

+ + −
÷

∑

( )
( )

1
1 11

1

1
   , 0 1. 

, 1

n
ii

yn

n
ii

p p
p

B n y

γα

α γ

=
+ − −+ −

=

∑−
= < <

+ + −∑
                                                                 (17)

Therefore, our posterior model is a beta 
distribution with (α+1,γ+∑yi -1) parameters. 
This can be written in another form as follows:

( )
( )

( ) ( )
1

1

Ã
 |

Ã Ã 1

n
ii

n
ii

y
f p

n y

α γ

α γ

=

=

+ +
=

+ + −

∑
∑

y

( ) 1

1 11  1
n

i
i

ynp p γα
=

+ − −+ − ∑−

Bayesians believe that everything which needs 
to be known about the parameter is summarized 
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in the posterior pdf  f(y|p).  There are many 
ways to find a point estimate of the parameter 
using the posterior distribution. However, the 
mean of the posterior distribution is taken as 
the best estimator of the parameter. We have
 ( )

( )
1

1

1, 1
 ( | )

1, 1

n
ii

n
ii

B n y
E p y

B n y

α γ

α γ

=

=

+ + + −
=

+ + + −

∑
∑

,

which can further be simplified as

( )
1

| . 
1n

ii

nE p y
y n

α
α γ

=

+
=

+ + + −∑
 (19)

Thus the Bayes estimator of the parameter p is:

1

.ˆ
1n

ii

np
y n

α
α γ

=

+
=

+ + + −∑
Without loss of generality, one can assume the 
value of  and   obtained by method of moment 
and maximum likelihood.  If the sample results 
are inconsistent with the prior assumptions, the 
Bayes estimate may differ considerably from 
the maximum likelihood estimate. In these 
situations, the maximum likelihood estimate 
would be the better estimate to use. 

Beta-geometric Regression 

In a regression model framework, typically the 
mean of the response variable Y is modeled 
as a linear function of the predictor vector X. 
According to the Generalized Linear Model 
(GLM) framework,51,52 we need a link function 
to obtain a functional relationship between the 
mean of the response variable and the linear 
predictors. There are several link functions 
available. One of these is the identity link, 
given by ( )i i ig Xµ µ β′= = , where β = (β1, β2, . 
. . , βp)’  is a p-dimensional vector of regression 
coefficients (p < n), and  (xi1, xi2, . . . , xip) denotes 

the observations on p predictors or covariates. 
When identity link is used,  ( )i i iE y Xµ β′= =
since 1( )i ig Xµ β− ′=  However, the most 
suitable link function is the log link function, 
given by  ( ) ln( )i i ig Xµ µ β′= =   For the log link 
function, the relationship between the mean of 
the response variable and the linear predictors 
is 1( ) iX

i ig X e βµ β ′− ′= =                            (20)

The log link function is particularly attractive 
for count data because it ensures that all of the 
predicted values of the response variable will 
be nonnegative.53

The parameters of the Beta-geometric 
regression model can be obtained by the 
method of maximum likelihood (ML). If we 
have a random sample of n observations on the 
response y and the predictors X, then the log 
likelihood function of the Beta-geometric pmf 
is given by

 1 1

1ln ( , ) ( 1) ln ln( )
i i
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Differentiating (6) with respect to β provides 
the score function and the information matrix 
as
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The ML estimator  of β is obtained by solving 
the equation   Unfortunately, there is no closed-
form expression for the solution of the ML 
estimate of  using above equation, hence its 
solution has to be performed numerically. 
However, a Beta-geometric regression 
algorithm can be developed with the any 
programming language, e.g. SAS’s IML, 
STATA’s ML capabilities, or by programming 
in R. In this study, we have used programming 
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in R for estimating the parameters. 

Results 

Application to real data

To illustrate the application of the proposed 
Beta-geometric regression, data was obtained 
from the 2000 Oman National Health Survey 
(ONHS). The survey was conducted by the 
Ministry of Health of Oman in collaboration 
with the UN Organizations such as UNFPA, 
UNICEF, WHO and the UN Statistics Division. 
Ever-married women aged 15-49 years from 
Omani nationals only were considered as 
respondents in the survey. The details of the 
survey may be seen elsewhere.54

The survey covered a nationally representative 
sample of 2,037 Omani married women 
selected following a multistage stratified 
probability sampling design. Among the 
respondents, 1,299 women had at least one 
ANC visit for their last live birth that occurred 
in the five years prior to the survey date. This 
study considered individual women’s record 
of timing of first antenatal care (ANC) visit to 
health personnel during the pregnancy period of 
their last birth. Although, time is a continuous 
variable, however, survey data on time to first 
ANC visit occur as a count variable, such as the 
first ANC visit occur in month 1, 2, 3 …,and 
so on, during pregnancy. Thus the time-to-first 
ANC visit is a random variable that count the 
number of trails to obtain the first success in a 
series of independent and identical Bernoulli 
trails.  In this application our response variable 
Yi = i, where i is the count denoting the number 
of months required to have first ANC visit.
Table 1 presents the distribution of the women 
according to the month of first ANC visit 

during the pregnancy period. Since in this study 
we have considered only women with at least 
one ANC visit, Yi take only non-zero positive 
integers starting from 1. The data indicate that 
most of the mothers (58%) received the first 
ANC visit within the first trimester of pregnancy 
and three-fourth (75%) received first ANC visit 
in 4th month or16 week of gestation. It is worth 
mentioning that at least one ANC visit during 
pregnancy is almost universal in Oman, and 
most of the women had ANC visit during 2nd 
or 3rd month of pregnancy.

Table 1. Distribution of women according to the month 
of first ANC visit

Month of first visit 
(Yi)

Frequency Percentage

1 195 15.01
2 280 21.56
3 282 21.71
4 223 17.17
5 205 15.78
6 66 5.08
7 36 2.77
8 8 0.62
9 4 0.31

Total 1299 100.0

Figure 3 depicts the graphical representation of 
the distribution of month of first ANC visit. It 
is evident from the graph that the distribution 
of the time to first ANC visit is skewed to the 
right. The data also indicate that the mean of 
the distribution (3.3 months) is higher than 
its variance (2.7 months), indicating that the 
distribution is under-dispersed. It, therefore, 
violate the principle of equi-dispersion (mean 
= variance) of Poisson distribution and over-
dispersion (variance > mean) of Negative 
Binomial distribution, and thus may not 
be suitable for modelling with Poisson or 
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Negative Binomial Distribution. However, it 
can be modelled with geometric distribution as 
the geometric distribution capture both under-
dispersion and over-dispersion in the data set.

Figure 3. Distribution of time to first ANC visit

Table 2 presents the estimates of the parameters 
of Beta-geometric model for the given 
data using method of moments, maximum 
likelihood method and method of Bayesian 
estimation. The results in Table 2 revealed 
that all the three methods provide very close 
estimates of the parameter α with lowest (α̂
=4.747) for method of moments and highest 
for Bayesian method (α̂ =5.053).  However, 
the estimates of γ vary with methods, having 
lowest ( γ̂ =5.355) for ML method and highest 
for method of moments ( γ̂ =8.544). It is possible 
that different methods of finding estimates 
of the parameters produce the same results, 
which makes the evaluation of the methods 
of estimation a bit easier, however, in many 
cases, different methods may lead to different 
estimates.  However, the mean squared errors 

indicate that all the three methods considered 
here are more or less equally efficient.
To illustrate the application of the proposed 
Beta-geometric regression model, we applied 
the model to the count data on time to first 
ANC visit, obtained from the 2000 Oman 
National Health Survey (ONHS). To examine 
the model performance, we made a comparative 
analysis of the fitting of the geometric, Negative 
Binomial and Beta-geometric regression model 
with the 2000 ONHS data. Results of the three 
regression models are compared based on their 
respective deviance, log likelihood and the AIC 
and BIC values as presented in Table 3. Based 
on the model goodness of fit criterions, Beta-
geometric model appeared to outperform the 
other two models, as it has highest log likelihood 
value and the lowest AIC and BIC values. 
The geometric model closely follow the Beta-
geometric model, while NB model showed poor 
performance with lowest log likelihood and 
highest AIC and BIC values. Thus we applied 
Beta-geometric regression model for analyzing 
the predictors of first ANC visit considering few 
selected predictors such as maternal age at the 
time of last birth, education, marital status, place 
of residence, region of residence, employment 
status and parity of mothers The results are 
presented in Table 4.
Table 4 lists the estimates of regression 
coefficients, standard errors (SEs) of the estimated 
coefficients, value of the test statistics, P-value 
and the 95% confidence interval (CI). The results 

Table 2. Estimates of parameters and the Mean squared Errors (MSEs) 

Method of estimation
Parameters

MSEα̂ γ̂
Method of moments 4.747 8.544 12.811

Method of maximum likelihood 4.949 5.355 12.875

Bayesian Method 5.053 7.874 12.822
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of the beta regression analysis presented in Table 
6. The results indicate that, after controlling the 
other factors, women education and their urban/

rural place of residence and region of residence 
appeared as significant predictors of the time to 
first ANC visits. 

Table 3. Comparison of goodness of fit of Geometric, Negative Binomial and Beta-geometric regression model
Criterion Geometric Negative binomial Beta-geometric
Deviance 1034.561 1058.872 1021.637

Log likelihood -2592.152 -3016.991 -2160.571
AIC 5252.304 6067.982 4355.142
BIC 5340.182 6155.861 4443.0209
df 1282 1282 1282

Deviance/df 0.8069 0.8244 0.7969

Table 4. Beta-geometric regression analysis of the time to first ANC visits 
Variables B SE Test statistics (Z) 95% CI P-value

Intercept 1.259 0.106 11.905 (1.020,1.392) <0.001
Women age at birth of child
15-20 (ref.) 0a . . .
20-24 -0.009 0.072 -0.123 (-0.150,0.097) 0.902
25-29 -0.021 0.076 -0.277 (-0.149,0.109) 0.782
30-34 -0.059 0.077 -0.78 (-0.203,0.059) 0.435
35+ -0.002 0.079 -0.031 (-0.099,0.166) 0.975
Education Level
No education 0a . . .
Some primary -0.108 0.055 -1.974 (-0.243,-0.056) 0.048
Primary/preparatory -0.142 0.049 -2.935 (-0.268,-0.103) <0.001
Secondary+ -0.213 0.061 -3.473 (-0.367,-0.146) <0.001
Marital Status 
Currently Married 0a . . .
Divorced/Separated/Widowed 0.109 0.071 1.529 (-0.017,0.218) 0.126
Place 
Urban 0a . . .
Rural 0.139 0.043 3.172 (0.074,0.217) 0.002
Region 
Muscat 0a . . .
Al-Batina 0.045 0.051 0.879 (-0.077,0.106) 0.379
Dhofar 0.253 0.069 3.617 (0.100,0.329) <0.001
Al-Sharqiah -0.160 0.066 -2.396 (-0.263,-0.009) 0.016
Al-Dhakhlia 0.111 0.065 1.696 (-0.006,0.213) 0.089
Al-Dhahirah 0.092 0.074 1.239 (-0.111,0.153) 0.215
Employment status
Employed 0a . . .
Not employed -0.012 0.061 -0.201 (-0.130,0.092) 0.840
Parity 
Primi-parous  0a . . .
Multi-parous 0.103 0.064 1.605 (-0.077,0.155) 0.108
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Discussions 

Modeling count data using the standard 
negative binomial (NB) model has recently 
become a foremost method of analyzing count 
response models, yet relatively few researchers 
or applied statisticians are familiar with the 
varieties of available NB models, or how best to 
incorporate them into a research plan.2  Hilbe2 
in his book on “Negative Binomial Regression” 
indicated geometric regression as an special 
case of the Negative Binomial regression, and 
suggested that it could be used as an alternative 
model to address specific facts in the data that 
give rise to overdispersion and thus altering 
the distributional assumptions of the Poisson 
distribution.  
Although geometric distribution, is a special 
case of NB distribution, and also belongs 
to the discrete family of distributions, little 
attention has been paid in modeling count 
data with the geometric distribution. There 
are many real-life phenomena that follow 
the geometric distribution. In the context of 
women reproductive health, one important 
variable is the time to first ANC visit, which 
occur as a count variable in survey data such 
as first ANC visit occur in 1st moth, 2nd month 
and so on. This type of data follow a geometric 
distribution. Since the distributional assumption 
plays critical role in statistical inference, it is 
important to choose the appropriate model for 
data analysis. 
Al-Balushi and Islam28 used geometric 
regression for analyzing data on time to first 
ANC visit. The limitation of the geometric 
regression model is that it assume constant 
probability of fist visit (success) for all women, 
which is unrealistic, and thus may affect the 
statistical inference.  In this study, we extended 

the geometric regression model by relaxing the 
assumption of constant probability of success, 
and assumed that it follows a beta distribution. 
The resulting model is defined as beta-geometric 
model. The Beta-geometric distribution can 
be thought of being composed of two pieces: 
the probability that success will occur, and the 
success follow a beta distribution with two 
shape parameter α and γ which must always be 
positive numbers. This combination creates a 
powerful tool in mathematical modelling. The 
use of the Bayesian approach in the construction 
of the Beta-geometric model seems to be the 
key that explains its performance. Indeed, the 
idea of treating the probability of first success, 
p, as random, is very reasonable. 
For estimating the two parameters α and γ of 
beta-geometric distribution, three methods of 
estimation were applied, including method of 
moment, MLE and Bayesian method. All the 
three methods provided very close estimate of 
α, but slight variation in γ. However, the MSEs 
were observed to be almost same. 
 The suitability of the Beta-geometric regression 
for analyzing the count data on time to first ANC 
visit was illustrated using real life data. The 
fitting of two other similar type of regression 
model, such as simple geometric and Negative 
Binomial (NB) models, are compared with the 
beta-geometric model. Based on the model 
goodness of fit criterions, Beta-geometric 
model appeared to outperform the simple 
geometric and the NB models. It is worth 
mentioning here that unlike NB regression 
which can generically accommodates only 
over dispersion, beta-geometric regression can 
be used for both over-dispersed and under-
dispersed count data. In addition beta-geometric 
regression model does not need an additional 
parameter to accommodate underdispersion 
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or overdispersion. For the purpose of further 
research, an alternative options could be the 
Kumaraswamy distribution instead of the beta 
distribution and then fitting the count data with a 
new “Kumaraswamy-geometric” model, since 
the beta and Kumaraswamy55 distributions 
share similar properties and support [0, 1]. The 
limitation of the beta-geometric model is that it 
is mainly suitable for modeling the count data 
that follow negative exponential distribution 
and less flexible for unimodal distribution. The 
beta-geometric model would be less ideal in a 
situation where the probability of success is not 
a random variable.  

Conclusion 

Beta-geometric regression model could be a 
flexible choice for analyzing real world count 
data set, and we expect that the Beta-geometric 
model may serve as an alternative model to 
the widely used Poisson or NB models for 
modeling count data with overdispersion or 
underdispersion. Further research is needed 
to test the adequacy of Beta-geometric model 
for analyzing the real-life phenomenon that 
follow the geometric distribution with varying 
probability of success such as the number 
of drills in an area before observing the first 
productive well by an oil prospector, the 
number of tosses of a fair coin before the first 
head (success) and so on. 
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