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Introduction: Quantile regression is a valuable alternative for survival data analysis, enabling flexible 
evaluations of covariate effects on survival outcomes with intuitive interpretations. It offers practical 
computation and reliability. However, challenges arise when applying quantile regression to censored data, 
particularly for upper quantiles. The minimum distance approach, utilizing dual-kernel estimation and the 
inverse cumulative distribution function, shows promise in addressing these challenges, especially with 
higher-dimensional covariates. 
Methods: This study contrasts two methods within the realm of quantile linear regression for survival analysis: 
check-based modeling and the minimum distance approach. Effectiveness is assessed across various scenarios 
through comprehensive simulation. 
Results: The simulation results showed that using the quantile regression model with the minimum distance 
approach reduces the percentage of root mean square error in parameter estimation compared to the quantile 
regression models based on the check loss function. Additionally, a larger sample size and reduced censoring 
percentage led to decreased root mean square error in parameter estimation.
Conclusion: The research highlights the benefits of using the minimum distance approach for quantile 
regression. It reduces errors, improves model predictions, captures patterns, and optimizes parameters even 
with complete data. However, this approach has limitations. The accuracy of estimated quantiles can be 
influenced by the choice of distance metric and weighting scheme. The assumption of independence between 
censoring mechanism and survival time may not hold in real-world scenarios. Additionally, dealing with large 
datasets can be computationally complex.
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Introduction  

Survival analysis, a key statistical tool, 
examines time-to-event data. Common 
applications include understanding the 

duration until a patient's demise or machinery 
breakdown.1 Traditionally, the Cox proportional 
hazards model, which relates the hazard rate 
(the likelihood of an event at a given time) to 
predictor variables, has been a staple in this 
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field. Yet, it falters when the hazard rate isn't 
proportionate over time or is influenced by 
variable interactions.2
The Accelerated failure time (AFT) models serve 
as an alternative. Assuming a fixed parametric 
distribution of survival times, they focus on 
parameter estimation of that distribution. 
However, they possess inherent limitations: the 
consistent shape assumption across covariate 
levels might not be always realistic, and they 
often struggle with the frequent challenge of 
censored data in survival analysis.3, 4 Censored 
data in survival analysis refers to incomplete or 
partially observed information where the event 
of interest (e.g., death, failure, or recovery) has 
not yet occurred for all individuals in the study. 
Reasons for this incompleteness include limited 
study duration, loss to follow-up, or ongoing 
observation of participants. As a result, the 
exact timing of these events remains unknown, 
resulting in censored observations.5
Koenker and Bassett revolutionized regression 
analysis in 1978 with their introduction 
of quantile regression. Unlike traditional 
methods that estimate the conditional mean, 
quantile regression focuses on estimating the 
conditional quantiles of the response variable. 
Their work led to the development of a robust 
quantile regression estimator that provides a 
comprehensive understanding of the response 
variable's distribution, going beyond the mean.6, 

7

Their inherent flexibility and resistance to 
outliers make them a potent tool in survival 
analysis, supplementing classical methods like 
Cox regression and AFT models.8-10

However, applying quantile regression, 
especially in censored contexts, hasn't been 
straightforward. Early works by Powell (1984, 
1986) assumed observable censoring variables 

for all data, an unrealistic expectation given the 
prevalence of random censoring.11

In quantile regression, the check loss function is 
commonly used for model fitting and validation 
for cross-validation approaches.12 In the check-
based approach, it's an optimization problem to 
find a piecewise function (the check function) 
that best fits the desired quantile.13 The check 
function divides data into segments and 
minimizes loss functions within each segment, 
measuring the deviation between observed and 
predicted quantiles. Iteratively adjusting the 
check function's parameters yields quantile-
specific coefficients.14 In quantile regression, 
three main approaches exist within the check-
based framework:

1. Inverse-censoring-probability (ICP) 
Weighting: 
Rooted in the check-based formulation of 
quantile regression, this approach leverages 
the expected loss of the observed response, 
specifically for uncensored observations. 
But it's limited by the need for smoothing 
the conditional distribution and often doesn't 
maximize the robustness of quantile regression 
in handling censored observations.15-21

2. Weighting Scheme for Quantile Regression: 
Not treating all censored observations 
uniformly, this method proposed by Portnoy 
(2003) and refined by Wang and Wang (2009) 
is grounded on Efron's redistribution-of-mass 
idea.8, 22 
3. Modification of Check-based Formulation: 
Lindgren (1997) and De Backer et al. 
(2019) suggest leveraging all observations 
as if complete and modifying the target 
in the check-based formulation for 
more accurate results.23, 24 Despite these 
advances, challenges remain. Censored 
quantile regressions, especially for upper 
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quantile levels, grapple with identifiability 
constraints. 

De Backer (2020) critiqued check-function-
based approaches, proposing the use of the 
inverse cumulative distribution function 
technique for linear regression. This method, 
although less common in linear regression, 
shows promise, particularly when combined 
with dimension reduction strategies for 
handling high-dimensional covariates.25

In essence, while survival analysis has 
evolved with diverse tools and techniques, 
finding the most effective and universally 
adaptable method remains a dynamic field of 
research.
The study aimed to compare check-based 
modeling and the minimum distance approach 
as two methods of quantile regression in 
survival analysis. This comparison was 
carried out through simulations across various 
conditions.

Models

Quantile regression, a statistical approach, 
enables inference about conditional quantile 
functions, estimating models for various 
quantile levels beyond the median. Our 
study contrasts two methods: Check-Based 
Modeling (Bang and Tsiatis, Wang and Wang) 
and the Minimum Distance approach (De 
Backer).

Bang and Tsiatis’s method

Assuming that Ti represents the time of the 
i-th failure, or a monotonic transformation of 
it, and Xi is a (p-1)× 1 vector of covariates 
for Ti, the median regression establishes a 
relationship between the median of Ti and the 

covariates, given Xi:
17

'
0i i iT Zβ ε= +

The vector Zi is defined as (1,Xi')', where i = 
1,...,n, and β is a vector with p dimensions. It 
is assumed that εi, i = 1,...,n, has a conditional 
median of 0. In the presence of censoring, the 
observations consist of bivariate vectors (Ti 
, δi), where Ti = min(Ti ,Ci), δi= I(Ti  ≤ Ci), 
Ci denote time to censoring and I(.) is the 
indicator function. The censoring variable Ci 
is assu  med to be independent of Ti. Moreover, 
it is assumed that the survival function G(.) 
of Ci does not depend on Zi, and {(Ti  ,Ci , 
Xi), i = 1,...,n} is generated through random 
sampling. β is estimate by a root of

( )
( )

( ){ }
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i
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where Ĝ  is the Kaplan-Meier estimator for G.
In this model, the estimation of the expected 
loss for the unobservable response relies 
on using the expected loss of the observed 
response. This estimation is carried out by 
considering only uncensored observations and 
adjusting through the conditional distribution 
of C given X. However, a limitation of this 
approach is that it necessitates smoothing of 
the conditional distribution, which imposes 
a constraint on the number of covariates that 
can be considered. Additionally, this approach 
does not fully exploit the robustness benefits 
offered by quantile regression when dealing 
with censored observations.  

Wang and Wang’s method

Wang and Wang proposed a technique that 
uses local weighting to estimate a model for 
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quantile regression that is locally linear.22

Wang and Wang's proposal to modify the 
standard quantile loss function for random 
censoring by adapting the self-consistent 
Kaplan-Meier estimator is a significant 
breakthrough in the field. Their approach, 
which uses a local weighting scheme to 
redistribute the probability mass (Pr(Ti>Ci│Ci 
, Xi)) of censored cases to the right, is a 
powerful tool that can lead to more accurate 
estimators for β(θ). By adopting this technique 
and minimizing the objective β(.), researchers 
can enhance the precision and reliability of 
their results. To obtain an estimator for β(θ), 
one can minimize the objective β(.).
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In order to minimize the objective function, 
when F0(t|x) is unknown, Wang and Wang 
proposed replacing F0() with Beran's local 
Kaplan-Meier estimator and then minimizing 
the resulting function.
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Where ( ) ( ), 1N t I Y t δ= ≤ =  and Bnk (x) is a 
sequence of nonnegative weights that add up 
to 1.
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K() is a density kernel(1) function and hn is 
a positive bandwidth(2) converging to 0 as          
n → ∞. In order to handle random censoring 
in data with multivariate covariates, this 
method utilizes the concepts of redistribution 
of mass and effective dimension reduction. 
Asymptotically, this procedure achieves 
model selection consistency, meaning it 
can accurately identify the true model with 
a probability approaching one.26

This approach utilizes nonparametric 
estimation of T's conditional distribution 
given X, with requisite weights, offering 
flexibility. Like Bang and Tsiatis's method, 
it implies covariate smoothing for modeling 
flexibility, regardless of initial parametric 
models. Two key assumptions underlie its 
validity: conditional independence of survival 
time and censoring given covariates, and 
linearity at the quantile of interest. In real data 
analysis, two limitations emerge: the curse 
of dimensionality hampers kernel smoothing 
with moderate covariates, and the method's 
design for continuous covariates challenges 
categorical variable cases, leading to an ill-
defined situation.27

De Backer’s method

Complete Data

Assume for every τ in the interval (0,1), mτ(x) 
(1) In nonparametric statistics, kernels are weight functions used in estimation methods.
(2) Bandwidth is a parameter that controls the width of the kernel or smoothing function in techniques such as kernel density 
estimation or kernel regression.
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represents the τ-th quantile of the distribution 
of a continuous dependent variable T, 
conditioned on X = x, where X is a vector of 
explanatory variables with at least one element 
and d dimensions.25

( ){ }|: |T Xm inf t F t xτ τ= ≥

The function FT|X represents the cumulative 
distribution function of T given X under certain 
conditions. With the utilization of Koenker 
and Bassett's alternative approach, which is 
achieved through targeted optimization:

( )arg min   
a

m T a X xτ τρ=  − =  

The "check" loss function(1), denoted as 
( ) ( )( )0 ,x u uτρ τ= − ≤ is a powerful tool 

in statistical analysis. It optimizes the expected 
loss, improves accuracy, and can handle 
complex datasets efficiently. Incorporating it 
into your analysis can lead to enhanced results 
and more reliable conclusions.

Low-dimensional random variables. 

This is a linear regression model that assumes:

( ) T
i im X Xτ τβ=  

for i=1,...,n, where X is a random vector of 
auxiliary variables with (d + 1) dimensions. 
The first element of X is set to 1, and βτ is a 
vector of unknown coefficients with (d + 1) 
dimensions. For all i=1,...,n, it can be observed 
that ( )| |T

T X i iF X Xτβ τ= . 

This is a natural extension of the technique 
of using the inverse cumulative distribution 
function to estimate βτ:
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In this scenario, F̂  is a non-parametric 
estimator of FT|X that is appropriate and 
obtained through a 'double-kernel' method. It 
is estimated using ˆ s

T XF , where ( )
u
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In this context,
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for some kernel density k ,the positive 
bandwidth parameter is hT , and 

( )0 0uY = . 
Also, |T̂ XF  , is the local Kaplan-Meier Beran 
estimator (Beran (1981)). When defining 
the weighted sequence ( ) ,njB x we add 1 as 
follows:
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The Nadaraya-Watson type weights have been 
utilized in this instance:
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(1) The check loss function is utilized to define quantile regression, and it is also employed as a validation metric in cross-
validation when the true distribution is unknown.
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High-dimensional random variables. 

When the dimension of the covariates becomes 
too, it becomes necessary to introduce an 
additional assumption in the model. In this 
regard, it is proposed to adopt a widely applicable 
global dimension reduction assumption, 
similar to the approach taken by Wang et al.25, 26 
The assumption of global dimension reduction 
posits that high-dimensional data can be 
effectively represented in a lower-dimensional 
space while preserving vital information. By 
capturing essential features and patterns, a 
lower-dimensional representation allows for 
simplification, visualization, and analysis 
of intricate datasets. The primary goal is to 
reduce dimensionality while minimizing the 
loss of crucial information.28 According to this 
assumption, all the information regarding the 
dependence of T on X is effectively contained 
within q linear combinations of X. In other 
words, the relationship between T and X can 
be adequately captured by a set of q linear 
combinations. That is

( )0,1 0,, .,T T
qT X X Xγ γ⊥ …

In this context, "┴ stands for independence, 
q < d + 1 for effective dimension reduction 
(EDR), and the γ0 represent unknown (d+1)-
dimensional linearly independent vectors."
In cases where auxiliary variables have a high 
dimension, we can make use of the following 
equation:

( )( )2

ˆ
1

ˆ arg min   ˆ|ˆ
n

s T
i iT z

i

F X Zτ β
β β τ

=

= −∑

Here, ( ),1 ,
ˆ  ,ˆ ˆ ,

T

i i i qZ Z Z= … , 

with j=1,…,q and i=1,…,n, and , 0,
ˆ ˆT

i j j iZ Xγ= . 
ˆ

ˆ s
T Z

F  is an estimator of the double kernel T XF  
, with the estimated images being replaced 

with X.

Simulation Scenarios 

To compare the quantile regression approaches 
(check-based and minimum distance), we 
employ simulation. Figure 1 illustrates the 
simulation process method and various 
simulation scenarios. The simulations are based 
on a model that is frequently demonstrated in 
the literature by Wang and Wang, Leng and 
Tong, and De Backer et al.18, 22, 24, 25

In this simulation study, we explore different 
levels of censoring proportions for small-
dimensional and multidimensional covariates. 
The study aims to simulate scenarios 
representative of domains with high levels of 
censoring, such as medical or survival analysis. 
The chosen censoring proportions are 40% 
and 30% for specific covariate types, while a 
15% censoring proportion is used to examine 
the robustness of quantile regression estimators 
under moderate censoring levels. The focus 
is on two quantile levels, 0.3 and 0.5, with 
an emphasis on the median (0.5 quantile) for 
high-dimensional variables. These choices 
allow for a comprehensive understanding of 
the response variable's distribution, providing 
insights into the central tendency and aiding 
in risk assessment and decision-making 
processes. Analyzing these quantiles captures 
heterogeneity, uncovers valuable information, 
and identifies potential nonlinear or 
heterogeneous effects. In our study, we include 
two sample sizes: 100 and 200. These sample 
sizes are commonly used in various fields of 
study and offer a moderate representation 
of the population. They align with typical 
research practices and strike a balance between 
practicality and representativeness. The choice 
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of these sample sizes also considers practical 
limitations in data collection, such as resource 
constraints. To compare the different estimators, 
we repeat each simulation process 500 times 
and assess their performance in terms of root 
mean squared errors (RMSE).
To ensure robust results about the optimization 
routine used in the estimation procedures, this 
study presents simulations by removing a few 
iterations for all estimators based on the settings 
that led to the worst mean absolute deviation 
between the estimated and true values (MAD) 
results. The MAD is defined for an estimator 

1

1

ˆ
n

T T
i j

i

n X Xτβ β−

=

−∑ . 
By considering the worst MAD results, which 
indicate the highest deviations from the desired 
target, the study aims to identify and eliminate 
outliers or extreme values that may adversely 
impact the optimization process.
For complete data without censoring, the 

optimal check-based modeling of Koenker 
and Bassett ( K ) and the minimum distance 
approach of De Backer ( D ) are considered. 
The simulation K  on uses candidate 
bandwidths for the De Backer and D  
estimators, with hx ranging from 0.05 to 0.25 
for SimPRoc1&2 and hx ϵ{0.2,0.25,…,0.7} 
for SimPRoc3&4. 

Results

For the univariate analysis, two simulation 
process models were considered:
In both cases, terms were generated from a 

Figure 1. Scenario for simulation process
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uniform distribution (0,1) and a multivariate 
normal distribution, respectively. The 
censoring variable was generated from a 
uniform distribution (0,M), where M was 
selected to achieve the desired censoring 
proportions.
For the multivariate analysis, two simulation 
process models were also considered:

which were conducted in both scenarios, Xji  
(i = 1,..., n, j=1, ..., 4 ) are iid variables from 
U[-1,1]; η1,…,ηn are iid variables from N(0,1), 
The censoring variables are also independent 
of auxiliary variables and are simulated from 
U[-2,M].
The study explored various scenarios to 
analyze the effects of censoring and sample 
size, encompassing different total sample sizes, 
censoring rates, and quantile levels. Censoring 
levels in real-world datasets vary depending on 
the data and research field. Certain domains, 
like medical or survival analysis, often face 
high levels of censoring due to data collection 
processes or competing events. 
Table 1 presents the RMSE of estimated β0, and 
Table 2 displays RMSE values for estimated 
β₁, stemming from the analysis of DGP1 and 
DGP2, which correspond to low-dimensional 
random variables. 
Given the results in Table 2, regarding the 

coefficient β₁:In SimPRoc2 at quantile 0.3, 
with a sample size of 100 and 15% censoring 
proportions (PC) the RMSE for complete 
data is 0.716 (Koenker ( K )) and 0.712 
(De Backer ( D )). In censored data RMSE 
values for Bang-Tsiatis, Wang-Wang, and 
De Backer methods are 0.734, 0.720, and 
0.718, respectively. With a sample size of 
200, RMSE for complete data becomes 0.713 
( K )) and 0.709 ( D ), and for censored data, 
RMSE values are 0.730, 0.718, and 0.715, 
respectively.
Increasing censorship to 40% with a sample 
size of 100 yields RMSE of 0.747 ( K ) and 
0.736 ( D ) for complete data, and 0.778, 
0.757, and 0.745 for censored data. Overall, 
RMSE rises with higher censorship.
When raising the quantile level to 0.5, (n=100, 
PC=15%) in SimPRoc2, the RMSE for 
estimating the coefficient β₁ compared to the 
quantile level of 0.3 demonstrates reductions 
as follows: in complete data, D  displays an 
approximately 9.4% decrease, K  shows 
around 6.1%, and for censored data, the Bang-
Tsiatis, Wang-Wang, and De Backer methods 
showcase reductions of about 5.6%, 6.3%, and 
6.1%, respectively.
Figure 2 displays a boxplot of coefficient 
residuals for SimPRoc1, utilizing complete 
and censored data, with a sample size of 
100, a quantile level of 0.5, and a censoring 
percentage of 15%. The findings notably 
indicate the consistent superiority of De 
Backer's method in terms of coefficient 
estimation for both complete and censored 
data situations.
The results are further compared for different 
scenarios in figure 3-6.
The findings indicate that the De Backer 
estimator performs slightly better than its 
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Table 1. The simulation results in Simulation Process 1 and 2, considering both censored and complete observations to compare 
the root mean square error of β0 estimates with the initial value β0=3.

SimProc n Pc τ
Method

D K Bang & Tsiatis De Backer Wang & Wang

1

100
15% 0.3 0.763 0.768 0.794 0.772 0.783

0.5 0.760 0.762 0.779 0.764 0.764

40% 0.3 0.778 0.782 0.789 0.779 0.787
0.5 0.768 0.770 0.793 0.778 0.785

200
15% 0.3 0.762 0.767 0.778 0.770 0.771

0.5 0.74 0.745 0.769 0.747 0.749

40% 0.3 0.775 0.780 0.788 0.760 0.78
0.5 0.745 0.752 0.787 0.750 0.754

2

100
15% 0.3 0.71 0.715 0.759 0.719 0.742

0.5 0.701 0.713 0.722 0.709 0.715

40% 0.3 0.718 0.721 0.757 0.723 0.748
0.5 0.715 0.719 0.744 0.711 0.72

200
15% 0.3 0.712 0.705 0.749 0.713 0.740

0.5 0.611 0.622 0.651 0.620 0.622

40% 0.3 0.716 0.715 0.746 0.722 0.742
0.5 0.658 0.678 0.668 0.624 0.662

K   , Optimal check-based modeling of Koenker and Bassett for complete data without censoring ;
D , The minimum distance approach of De Backer for complete data without censoring;

n , The sample size;  Pc , Censoring proportions;  τ , Quantile levels; SimProc, Simulation process;

Table 2. The simulation results in Simulation Process 1 and 2 based on both censored and complete observations to compare the 
root mean square error of  β1 estimates with the initial value β1=5.

SimProc n Pc τ
Method

D K Bang & Tsiatis De Backer Wang & Wang

1

100
15% 0.3 0.760 0.762 0.769 0.764 0.764

0.5 0.744 0.753 0.755 0.732 0.744

40% 0.3 0.791 0.814 0.823 0.774 0.771
0.5 0.752 0.784 0.793 0.746 0.761

200
15% 0.3 0.751 0.758 0.774 0.753 0.755

0.5 0.737 0.750 0.761 0.752 0.752

40% 0.3 0.781 0.811 0.781 0.769 0.766
0.5 0.747 0.772 0.780 0.746 0.758

2

100
15% 0.3 0.712 0.716 0.734 0.718 0.720

0.5 0.618 0.655 0.678 0.657 0.657

40% 0.3 0.736 0.747 0.778 0.745 0.757
0.5 0.702 0.705 0.748 0.712 0.718

200
15% 0.3 0.709 0.713 0.730 0.715 0.718

0.5 0.616 0.649 0.669 0.638 0.641

40% 0.3 0.738 0.745 0.753 0.742 0.750
0.5 0.700 0.703 0.721 0.701 0.714

K , Optimal check-based modeling of Koenker and Bassett for complete data without censoring ;
D , The minimum distance approach of De Backer for complete data without censoring;

n , The sample size;  Pc , Censoring proportions;  τ , Quantile levels; SimProc, Simulation process;
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competitors in terms of RMSE for both 
SimPRoc1 and SimPRoc2, especially for small 
censoring proportions. 
This study focuses on two multivariate 
challenges: SimPRoc3 and SimPRoc4. For 
brevity, our analysis specifically targets the 
median. In SimPRoc3, the true model is linear 
across all quantile levels, while in SimPRoc4, 
linearity is confined to the τ-th quantile of 
interest.
Table 3 indicates that, for median response 
variable estimation with a sample size of 
100 and a 15% censoring proportions using 
SimPRoc3, the D  method reduces RMSE by 
around 1.45% compared to K  for complete 
data, and by about 2.57% and 0.4% De 
Backer’s method compared to Bang-Tsiatis 
and Wang-Wang for censored data. With a 
sample size of 200, RMSE decreases by around 
0.01% on average, and with a 30% censoring 
proportions, it increases by about 0.03%.

 Furthermore, Figure 7 provides a comparative 
evaluation of the RMSE concerning the 
estimated response variable, imparting valuable 
insights into the methods under review.
Our study highlights that the De Backer 
procedure exhibits comparable RMSE 
performance when compared to check-
based estimators, particularly at the central 
quantile level of 0.5. Interestingly, we 
observe enhancements in performance when 
handling low levels of censoring. Notably, 
even in situations with complete data and no 
censoring, the De Backer minimum distance 
approach ( D ) can outperform Koenker and 
Bassett's optimal check-based modeling ( K ) 
at different quantile levels.

Discussion

This study compares two methods for censored 
data quantile linear regression: check-based 



280

Vol 9  No 2 (2023)

Quantile Regression in Survival Analysis: Comparing Check-Based ...

Mokhtarpour F et al. 



281

Vol 9  No 2 (2023)

Quantile Regression in Survival Analysis: Comparing Check-Based  ...

Mokhtarpour F et al. 



282

Vol 9  No 2 (2023)

Quantile Regression in Survival Analysis: Comparing Check-Based ...

Mokhtarpour F et al. 

Table 3. The simulation results in Simulation Process 3 and 4 for median based on both censored and complete observations to 
compare the root mean square error of Response variable estimates.

SimProc n Pc

Method

D K Bang & Tsiatis De Backer Wang & Wang

3

100
15% 0.739 0.740 0.776 0.755 0.756

30% 0.766 0.777 0.801 0.790 0.793

200
15% 0.719 0.724 0.773 0.748 0.752

30% 0.714 0.736 0.763 0.756 0.758

4

100
15% 0.716 0.725 0.744 0.720 0.724

30% 0.725 0.749 0.779 0.751 0.759

200
15% 0.644 0.658 0.674 0.660 0.661

30% 0.678 0.679 0.697 0.673 0.674

K
 , Optimal check-based modeling of Koenker and Bassett for complete data without censoring ;

D , The minimum distance approach of De Backer for complete data without censoring;
n , The sample size;  Pc , Censoring proportions;  SimProc, Simulation process;
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modeling and the minimum distance approach. 
While both are parametric, check-based 
modeling uses nonparametric estimators for 
censored data, the minimum distance approach 
employs the inverse cumulative distribution 
function. The latter incorporates a double-
kernel estimator and dimension reduction for 
multivariate covariates. Simulation results 
reveal similar model performance, yet the 
minimum distance approach consistently 
outperforms check-based methods with lower 
root mean square error across scenarios. 
Larger sample sizes decrease error, but higher 
censorship rates increase bias in coefficient 
estimates. Also, Increasing the sample size, 
even when accounting for a higher censorship 
percentage, results in a decrease in RMSE. 
Lately, quantile regression has attracted 
substantial attention, leading to numerous 
studies conducted on this subject, some of 
which we highlight.
De backer et al. in their study indicated in an 
extensive simulation study that the resulting 
quantile regression estimator with respect 
to established check-based formulations 
has fewer variance results25 Yazdani et al. 
compared five quantile regression methods for 
right-censored data, focusing on breast cancer 
patient survival. CQR consistently revealed 
prognostic factors, with coefficients similar 
below 0.1 quantiles and variations above.29 

In a recent study by Conde-Amboage, Was 
shown quantile regression's effectiveness in 
addressing complex biomedical questions.30 
Tedesco and Van Keilegom introduce a method 
to compare conditional quantile curves under 
right censoring, applicable to diverse data 
types. Validation with diabetic retinopathy 
data demonstrates its higher power across a 
range of quantile levels.31 Rodrigues et al. 

innovatively combines quantile regression 
with an exponentiated odd log-logistic Weibull 
distribution, enhancing data analysis by 
addressing quantile estimation and distribution 
modeling.32

Beyhum introduces a semiparametric quantile 
regression model to handle endogeneity and 
random right censoring. It utilizes instrumental 
variables for this purpose, demonstrating 
effectiveness through analysis of the national 
Job Training Partnership Act study with robust 
performance and low estimator bias.33 

Innovative quantile regression for discrete 
responses that introduce by Geraci, employs 
interpolation and a two-step estimator for 
conditional mid-quantiles and regression 
coefficients. The method proves strongly 
consistent and asymptotically normal, 
outperforming alternatives in simulations.34 
HE et al. proposes a smoothed martingale-
based sequential estimating equations 
approach with scalable algorithms for 
enhanced performance in high-dimensional 
sparse settings. Simulations show improved 
results by relaxing the exponential sparsity 
term in existing CQR work.35

Conclusion

The simulation results show that all models 
perform similarly, but the minimum distance 
approach outperforms check-based models in 
all scenarios with a lower root mean square 
error. As the sample size increases, the root 
means square error decreases in all models. 
However, increasing the censorship rate leads 
to higher bias in the regression coefficient 
estimates.
Overall, the findings indicate that the minimum 
distance approach is a preferable option 
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for predicting results in various scenarios, 
particularly when precise parameter estimates 
are needed, despite its higher computational 
intensity compared to other methods. 
However, it is worth noting that check-based 
methods offer advantages in specific contexts, 
such as computational efficiency and ease of 
implementation. The selection between the 
minimum distance approach and check-based 
methods should consider the research question, 
data characteristics, and available resources. 
Further investigation into scenarios where 
check-based methods excel would contribute 
to a better understanding and aid researchers in 
making informed decisions.
In future studies, enhancing the method's 
versatility to handle left-censored data could 
broaden its applicability. Also, adapting the 
minimum distance approach to incorporate 
nonlinear quantile regression models 
introduces exciting avenues for analysis. This 
extension has the potential to offer novel 
insights and applications by capturing intricate 
variable relationships. 
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ICP , Inverse Censoring Probability
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Koenker and Bassett for complete data     
without censoring 

D , Minimum distance approach of De Backer 
for complete data without censoring 
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