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Introduction: This study uses advanced geospatial modeling to analyze key determinants of COVID-19 death 
cases across the Middle East and North Africa (MENA) region, aiming to reveal spatial patterns and inform 
targeted interventions for enhanced public health response.
Methods: This study employs GIS and geostatistical models, including OLS, SLM, SEM, GWR, and 
MGWR, to analyze spatial and demographic determinants of COVID-19 mortality across MENA. By 
examining socioeconomic, medical, and demographic factors, it identifies key drivers and explores spatially 
non-stationary relationships impacting death rates.
Results: The study found that hospital bed allocation, unemployment rate, and vaccination doses positively 
correlate with COVID-19 death cases in MENA, likely due to better reporting and healthcare access. The OLS 
model (R² = 0.7346) highlighted spatial autocorrelation, prompting the use of SLM and SEM, which confirmed 
predictor significance. GWR (R² = 0.8140) and MGWR (R² = 0.8187) revealed spatially non-stationary 
relationships, with hospital beds impacting the northwest (GWR) and southwest (MGWR). Unemployment 
was significant in the northeast (Iran, Turkey) and northwest (Morocco), while vaccination doses were notably 
influential in Iran and Somalia.
Conclusion: This study emphasizes the significant roles of healthcare capacity, socioeconomic factors, and 
vaccination coverage in influencing COVID-19 mortality across MENA. It highlights the vulnerability of 
healthcare systems in developing countries and underscores the need for targeted resource allocation. Using 
spatial models like GWR and MGWR, the research reveals regional variations, especially in the northwest, 
advocating for tailored, region-specific interventions. By integrating GIS and geostatistical models, this 
analysis lays a foundation for future research on COVID-19 dynamics, providing crucial insights to inform 
policy measures for better public health crisis management.
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Introduction

The Middle East and North Africa (MENA) 
region has been severely affected by the 

COVID-19 pandemic. According to Our 
World in Data, as of August 2023, the region 
has reported over 28 million COVID-19 
cases and more than 800,000 deaths.1 Spatial 
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analysis can be used to identify the factors 
that are associated with the high death toll 
from COVID-19 in the MENA region. This 
information can be used to develop targeted 
interventions to reduce the spread of the virus 
and improve the health outcomes of people in 
the region.
There are several studies on COVID-19 
around the globe, but not much about the death 
incidence. However, they all focused on the 
factors that led to an epidemic in a particular 
area or nation and used various statistical 
techniques. Using spatial autoregressive 
models (SAR) and geographically weighted 
regression (GWR) models, Ganasegeran and 
co-workers in Malaysia discovered that the 
spread of COVID-19 has been shown to be 
influenced by density of population, followed 
by average household income per capita and 
the GINI.2 Bayode and colleagues combined 
the spatial statistical methods (SEM, SLM and 
OLS), and they discovered that the population 
density is statistically meaningful.3 
From the methodological perspective, to 
identify the death incidence, Urban and 
Nakada used the (GWR) model to analyze 
the relationship between COVID-19 death 
incidence and several socioeconomic and 
environmental factors.4 The research has 
demonstrated the spread of COVID-19 in 
regions with very vulnerable populations, 
and these results reflect current studies, 
highlighting the need for particular attention 
in outlying regions and rural villages.4 Kotov 
and co-workers used the excess mortality as a 
measure of fatalities direct and indirect caused 
by COVID-19; their results showed that, the 
number of older people is one of the most 
important things that contribute to the high 
death rate, and the structure of jobs shown by 

the number of people working in manufacturing 
by using global OLS and SEM models.5

To effectively stop the spread of COVID-19, 
it is important to know how often people die 
from this epidemic. Therefore, this research 
aimed to do a geographical modeling analysis 
of COVID-19 in the MENA region utilizing 
GIS. 

Materials and Methods

Background and Study Database 

The COVID-19 disaster is not the first to hit the 
area. Even before the coronavirus (COVID-19) 
pandemic reached MENA countries in March 
2020, the region faced several serious social 
and economic challenges exacerbated by the 
outbreak, the fall in oil prices from 2014 to 
2016, and the resumption of demonstrations in 
2019 in nations that had avoided the first wave 
in 2010–2011.5 According to studies, the death 
rate was lower the earlier the government 
acted.6 Even though school closures 
significantly influenced them, they were not 
as successful as earlier government initiatives. 
The government must decisively and quickly 
combat the infection.7 It is easier to fight 
COVID-19 in nations with strong democratic 
institutions, the rule of law, property rights 
protection, and political stability. Government 
actions are, therefore crucial in helping the 
country combat the COVID-19 outbreak.8

Several classifications exist for the Middle 
East and North Africa, and we would use 
the categories of the World Bank and United 
Nations Statistics Division (UNSD).9 The 
World Bank and UNSD provide a list of the 
countries in the MENA region including 
Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, 
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Figure 1. The MENA region map

Sudan, Israel, Jordan, Kuwait, Lebanon, 
Libya, Morocco, Oman, Tunisia, Palestine, 
Qatar, Saudi Arabia, Syria, Somalia, Turkey, 
Cyprus, the United Arab Emirates, and Yemen 
(Figure 1).10, 11

The data used in this analysis was gathered 
from the organizations Our World in Data 
https://ourworldindata.org/covid-cases, the 
International Labor Organization
https://ilostat.ilo.org/data/, and PEMANDU 
Associates 
https://covid19.pemandu.org/, who oversee 
tracking COVID-19 and other explanatory 
factors throughout the MENA region.  Data 
on disease prevalence was gathered from the 
first case in each nation until December 2022. 
The crude death number was calculated at the 
whole region level (Figure 2). The geodatabase 
was created through the GIS environment 
software (GeoDa 1.20.0.20, QGIS 3.30.2, 
and ArcMap 10.8.2) and RStudio 2023.06.0 
was used to connect the demographic, 
health care, and socioeconomic dependent 
and independent variables to the boundary 

shapefile of administrative geographical in the 
MENA region (Table 1). To figure out whether 
sociodemographic characteristics are connected 
to the occurrence of COVID-19 in the MENA 
region, three global OLS, SEM, and SLM and 
two local GWR and Multiscale-GWR models 
were used. By enabling the computation of 
non-stationary (local) parameter values instead 
of stationary parameter estimates, the local 
modelling procedure significantly improves 
upon conventional global regression. The R² 
and the Akaike Information Criterion (AIC) 
were used to analyze the performance of 
the models to explain death incidence in the 
MENA region.

The non-spatial global regression model

The Ordinary Least-Squares model is a linear 
connection between a continuous response 
variable and a group of predictor variables; it 
presupposes steady and stable geographical 
correlations.6 The OLS model presumes 
independence among all observations. Here 
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Figure 2. Distribution of  COVID-19 death number across the area boundaries

Table 1. Description of response and explanatory variables and data sources.

Parameters Description Measurement 
unit Source

Death cases 
(response variable)

Cumulative Death cases of COVID-19 cases in 
period (Jan 4, 2020, To Dec 31, 2022)

No. of cases ‹https://ourworldindata.org/coronavirus›

Population density 
(explanatory variable)

The number of people per MENA country 
calculated by dividing the total number of people 

by total land area

people per 
sq. km of 
land area

https://data.worldbank.org/indicator/

GDP per capita 
(explanatory variable)

GDP per capita is gross domestic product divided 
by midyear population. It is calculated without 

making deductions for depreciation of fabricated 
assets or for depletion and degradation of natural 

resources

 Most Recent 
Value in US$

https://data.worldbank.org/indicator/

Total vaccine doses  
(explanatory variable)

All COVID-19 vaccine doses, including boosters, 
are counted individually till Dec 31, 2022

No. of cases ‹https://ourworldindata.org/coronavirus›

Unemployment 
(explanatory variable)

Unemployment refers to the share of the labor 
force that is without work but available for and 

seeking employment of MENA  countries in 2022

Index https://ilostat.ilo.org/data/

People fully vac-
cinated 
(explanatory variable)

Total number of people who received all doses 
prescribed by the initial COVID-19 vaccination 

protocol till Dec 31, 2022

No. of cases ‹https://ourworldindata.org/coronavirus›
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GDP Gross Domes-
tic Product 
(current US$) 
(explanatory variable)

Total monetary or market value of all the finished 
goods and services produced within a country’s 

borders in 2021

Most Recent 
Value 

(Millions)

https://data.worldbank.org/indicator/

Population 
(explanatory variable)

The last population count of MENA  countries in 
2022

Total number https://data.worldbank.org/indicator/

Population aged 65+ 
(explanatory variable)

Total population 65 years of age or older in each 
MENA  countries in 2022

Total number https://data.worldbank.org/indicator/

Inflation 
(explanatory variable)

Inflation as measured by the consumer price index 
reflects the annual percentage change in the cost 
to the average consumer of acquiring a basket of 

goods and services that may be fixed or changed at 
specified intervals

Index https://data.worldbank.org/indicator/

Severity index 
(explanatory variable)

The Severity Index factors information on propor-
tionate death rates due to COVID-19 and con-

firmed cases as a factor of the country›s population

Index https://covid19.pemandu.org/

Recovery index 
(explanatory variable)

The Recovery Index considers recovery rates, 
active cases per population, testing levels, and 
countries› ability to detect, respond, and treat 

epidemics based on the Global Health Security 
Index.

Index https://covid19.pemandu.org/

Hospital beds 
(per 1,000 people) 
(explanatory variable)

The total number of beds available in public, 
private, general, and specialized hospitals, and 

rehabilitation centers in each MENA  countries in 
2022

Index https://data.worldbank.org/indicator/

Nurses and midwives 
(per 1,000 people) 
(explanatory variable)

Nurses and midwives include professional nurses, 
professional midwives, auxiliary nurses, auxiliary 

midwives, enrolled nurses, enrolled midwives, 
and other associated personnel in each MENA  

countries in 2022

Index https://data.worldbank.org/indicator/

Parameters Description Measurement 
unit Source

Continue table 1.

are the characteristics of this study's OLS form:

0       ;   1, , .i i iy x i nβ β ε= + + = …       (1)

Assuming that yi is the response variable 
(COVID-19 death cases); intercept is defined 
as β0; xi is the matrix of explanatory variables 
related to the demographic, health care, and 
socioeconomic;7 εi is the random error; and β 
is the regression coefficients matrix.6, 8

The spatial global regression models

When a geographically lagged dependent 
variable is included into the SLM, spatial 
autocorrelation between the response and 
explanatory variables may be accounted for. 
The SLM is defined as follows9, 10:

0          ;   1, , .i i i i iy x W y i nβ β ρ ε= + + + = …      
                                                                  (2)
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Where, yi= COVID-19 death incidence in area 
i ; β0=  intercept; xi= the matrix of explanatory 
variables that are related in the area i; ρ= the 
parameter  of spatial autoregressive; Wi= spatial 
weight matrix. In addition, Rho measures 
spatial interdependency, and Wi explains how 
observations are interrelated.11, 12 
The SEM model assumes a spatial correlation 
between OLS error components or residuals.8 

The terms of error are thus separated into 
two categories: random error terms and error 
terms.13 The given formula illustrates the SEM 
model:

0  ;   1, , .i i i i iy x W i nβ β λ ξ ε= + + + = …                                                                    
                                                                   (3)

Where, at an area i, ξ i = the spatial element of 
the error; Lambda (λ) represents the strength 
of correlation between the elements; the 
uncorrelated standard error is represented by 
εi ; Wi = spatial of weights matrix; Wi ξi reveals 
the strength of the connection between the 
spatial ingredient of the errors and each other 
for close data.14 The SEM model compensates 
for spatial error autocorrelation through the 
spatially weights matrix.9, 15

The spatial local regression models

When spatial datasets are used, global 
regression models have a significant flaw.16, 

17 This model fails to account for aspects 
of spatial heterogeneity. This attribute 
demonstrates that the connections between 
the response and predictor variables change 
throughout geographic space.18 By contrast 
to global regression models, which share the 
same estimated parameters for the entire study 
area.19, 20 GWR is utilized to create a local 

regression model for each area to highlight the 
changing spatial correlations between response 
and explanatory variables.21 Typically, the 
GWR model is stated as the equation below:

0
1

     ;  1 , 2, ,  ;  1, 2, , .
m

i i ij ij i
j

y X i n j mβ β ε
=

= + + = … = …∑

                                                                   (4)
Where, at an area i, Xij  = the value of the jth 
independent variable; βij = the local regression 
coefficient for the jth predictor variable; βi0= 
the intercept parameter; and εi= the random 
errors.
On the basis of a consistent geographical 
scale which the  global bandwidth across the 
research region, GWR models may capture 
spatial changes in the interactions between 
response and independent variables.18, 22 In 
some cases, however, this technique may not 
be suitable when the relationship between 
response and explanatory variables varies at 
different scales.23

Multiscale-GWR modelling solves this issue 
by raising data-driven local models at different 
spatial scales for exploring local associations 
between independent and dependent variables. 
On the basis of this model's broad outline,20 
different bandwidths (local bandwidths) can 
be incorporated within the study area,21 and it 
can be used to model the following areas: 

1

 ;  1 , 2, ,  ;  1, 2, , .
m

i bwj ij i
j

y X i n j mβ ε
=

= + = … = …∑    (5)

In this equation, all the parameters are the 
same as in equation 4, except for βbwj which 
is the bandwidth parameter that is used for the 
estimation of the jth relationship.24

The local models account for locational details 
by providing location-specific parameter 
estimations.25 The GWR takes into account 
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data's geographical heterogeneity, and the 
Multiscale-GWR takes into account shifts in 
the investigated connections across spatial 
scales.26, 27

Framework and calibration of spatial 
regression models

Figure 3 shows our suggested spatial modelling 
framework for examining the impacts of 
demographic, health care, and socioeconomic 
factors on COVID-19 death incidence, which 
incorporates spatial autocorrelation and 
spatial heterogeneity. In the development of 
this framework, previous literature has been 
consulted.15, 17, 18, 28

Figure 3. Spatial regression modeling framework.

The Ordinary Least Squares (OLS) model is 
the best place to begin any spatial regression 
analysis.9, 29 The first part of this research 

entails calibrating an OLS model utilized a 
stepwise regression technique and evaluating 
whether the model exhibited multicollinearity 
through the variance inflation factor (VIF).30

The OLS model is unsuitable when residuals 
are spatially correlated and/or spatially 
heterogeneous.31, 32 Following the creation of 
the OLS model, global Moran's I test was used 
to evaluate spatial autocorrelation. Significant 
Moran's I value imply spatial autocorrelation, 
which implies the necessity to build the spatial 
global regression models including SLM and 
SEM.33, 34 Incorporating the first-order Queens' 
contiguity weight matrix, these two models 
were created using the software mentioned 
in the database section. These two models 
were calibrated using the same significant 
explanatory variables as the OLS model so that 
they could be compared.
To determine whether of SLM or SEM models 
are superior, the results of Lagrange Multiplier 
(LM)-lag and Lagrange Multiplier (LM)-error 
tests must be examined.28 If the LM-lag is 
significant and the LM-error is not, it should 
be appropriate to implement the SLM model. 
The SEM model should be developed when 
LM-error is significant while LM-lag is not. 
There should be a check of the Robust LM-
lag and Robust LM-error results if LM-lag 
and LM-error are both significant.35 The SEM 
model should be implemented if the Robust 
LM-error is significant, and the Robust LM-lag 
is not. The SLM model should be developed 
if the Robust LM-lag is significant while the 
Robust LM-error is not.28, 36 suggests that in the 
presence of both Robust LM-lag and Robust 
LM-error, it is important to examine the test 
that has the lowest p-value.
To assess whether the residuals of OLS exhibit 
spatial non-stationarity, we used a scale-
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location plot.37, 38 It is used to check for the 
assumption of homoscedasticity, which is the 
assumption that the variance of the residuals 
is constant across all fitted values if the red 
line is approximately horizontal across the 
plot, then the assumption of homoscedasticity 
is satisfied.37-40 Another approach to checking 
for spatial non-stationarity is using local 
spatial association indicators (LISA). LISA 
statistics measure the spatial autocorrelation of 
a variable at a specific location relative to its 
neighbors. It allows you to identify areas where 
the spatial relationships differ from the overall 
trend.41-44 That highlights the need to design 
the spatial local regression models including 
GWRs and Multiscale-GWR.45 This study 
used the software described in the database 
section to calibrate these two models, which 
incorporate the similar significant explanatory 
variables as the non-spatial model. We utilized 
the adaptive kernel since, in comparison with 
fixed-bandwidth kernels have the limitation 
that calibration may be problematic in sparsely 
populated regions, the adaptive bandwidth 
kernel avoids this issue.13, 46, 47 That is why 
MGWR implements an adaptive bandwidth 
kernel as default.13, 48, 49 In furthermore, these 
two local models were optimized using AICc.50

After building all five models, we compared 
their results using the, R2, the Akaike 
information criterion (AIC), and the residual 
sum of squares (RSS) to draw conclusions about 
which one was most effective. The present 
work considers demographic, health care, and 
socioeconomic factors. Some diagnostics tests, 
such as the VIF test and the stepwise forward 
technique, were utilized to identify the most 
relevant predictor variables for regression 
models. We find Hospital beds, unemployment, 
and the total number of vaccination doses are 

three critical characteristics that are important 
in determining the death incidence of the virus.

Results

Table 2 displays the results of the estimated 
OLS model. Three variables are highly 
relevant: hospital beds, unemployment rate, 
and total vaccine doses. Multicollinearity was 
nonexistent among the model's explanatory 
variables since all the VIF statistics were less 
than 2.51 The model results indicate that the 
model was statistically significant (p-value 
<0.0001). The model exhibited an R2 value of 
0.7346, showing the three significant predictor 
variables could justify 73.46 % of the variance 
in COVID-19 death cases across MENA and 
that all important variables had a positive 
connection with the response variable (Table 2).
Since the residuals of OLS exhibited spatial 
autocorrelation, it was required to build the 
SLM and SEM models. The overall findings 
of the SLM and SEM models are presented 
in (Table 3). In all models, the three predictor 
variables of the OLS were found to be 
statistically significant, and their coefficients 
indicate a positive relationship with the 
dependent variable. Both Rho and Lambda 
were statistically significant at 5% level, and 
the R2 and AIC values of SLM and SEM 
models were close similar to the results of the 
OLS model (Table 3). This research shows that, 
contrary to popular belief, these two models 
only marginally outperform the OLS model.
Figure 4,  the scale-location plot shows a slight 
upward fanning pattern. That suggests that the 
variance of the residuals is increasing with 
the fitted values, the red line is not horizontal, 
and then the assumption of homoscedasticity 
is violated. In addition, Local indicators of 
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Table 2. Summary statistics of global OLS model.
Variable Coefficient St. Error t- Statistic p-value VIF

Intercept -7.2214*** 2.17494 -3.320 0.0034 –
Hospital beds 0.5235** 0.2320 2.256 0.0354 1.0499
Unemployment 0.0638** 0.0254 2.511 0.0207 1.1668
LnTotal vaccine doses 0.8825*** 0.1224 7.210 0.0001 1.1155

* p-value < 0.1,                              ** p-value < 0.05,                  *** p-value < 0.01
1. Standard Error (St. Error)           2. t-Statistic (t-Stat)               3.Variance Inflation Factor (VIF)

Table 3. Summary statistics of SLM and SEM models.

Variable
Coefficient St. Error Z-score P-value

SLM SEM SLM SEM SLM SEM SLM SEM
Intercept - 8.531*** -5.334*** 1.8981 1.9230 -4.4944 -2.773 0.0000 0.0055
Hospital beds 0.3726* 0.3303* 0.1923 0.1967 1.9372 1.6792 0.0527 0.0931
Unemployment 0.0606*** 0.0540** 0.0206 0.0245 2.9396 2.2039 0.0032 0.0275
LnTotal vaccine 
doses

0.8110*** 0.7949*** 0.1030 0.1061 7.8724 7.4891 0.0000 0.0000

Rho 0.3134** - 0.1347 - 2.3265 - 0.0199 -
Lambda - 0.4077** - 0.1930 - 2.1117 - 0.0347

*p-value < 0.1,                  **p-value < 0.05,                   ***p-value < 0.01
Y= Death cases,                   X1= Hospital beds,                   X2= Unemployment ,                   X3= LnTotal vaccine doses.

spatial association (LISA) maps allow us to 
identify areas where the spatial relationships 
(spatial non-stationarity) are different from the 
overall trend (Figure 5).

Figure 4. Scale-location plot to test for Heterogeneity.

To deal with the issue of the OLS model's spatial 
non-stationarity, we utilized two local spatial 
regression models: GWR and multiscale-
GWR. Table 4 provides the goodness-of-fit 

Measures of all models, and we found a much 
higher  R2 and a much lower AIC  for the GWR 
and multiscale-GWR models than all global 
models. The R2 (0.8140), and AIC (54.343) of 
the GWR model. Besides, we found R2 (0.8187) 
and AIC (53.785) for the Multiscale-GWR 
model. All these results suggest that while the 
GWR model performed comparably to the 
Multiscale-GWR model, the Multiscale-GWR 
model showed a slightly better performance.
Figures. 6 and 7 exhibit the spatial pattern of 
the predictor variables coefficients of the GWR 
and Multiscale-GWR models. A comparison 
between the coefficients would assist in 
acquiring a clear view to understand the spatial 
variance of the interactions and the relevance 
of taking into consideration spatial scale 
variation. In Figure 6, the coefficients' spatial 
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Figure 5. LISA maps for identifying and exploring spatial non-stationarity.

Table 4. Measures of goodness-of-fit for OLS, SEM, SLM, GWR, and MGWR in modeling COVID-19 Death cases.

Criterion OLS SEM SLM GWR MGWR

R2 0.7346 0.7686 0.7898 0.8140 0.8187

AIC 65.652 65.165 62.857 54.343 53.785

RSS 14.28 12.45 11.31 10.01 9.75

OLS= Y= Death cases, X1= Hospital beds, X2= Unemployment , X3= LnTotal vaccine doses.
SEM= Y= Death cases, X1= Hospital beds, X2= Unemployment , X3= LnTotal vaccine doses.
SLM= Y= Death cases, X1= Hospital beds, X2= Unemployment , X3= LnTotal vaccine doses.
GWR= Y= Death cases, X1= Hospital beds, X2= Unemployment , X3= LnTotal vaccine doses.
MGWR= Y= Death cases, X1= Hospital beds, X2= Unemployment , X3= LnTotal vaccine doses.
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Figure 6. The effects of Hospital beds, %Unemployment, and Total vaccine doses in describing COVID-19 death cases us-
ing the GWR model across the MENA region.

distribution of hospital bed numbers displayed 
a distinctive pattern in the GWR model; the 
coefficients became larger in the northwestern 
area and dropped across the eastern and 
northeastern of the region. On the other hand, 
Figure 7 exposes the impact of the coefficients 
of hospital bed numbers as per the MGWR; 
there is a higher impact in the southwestern 
part (Somalia) and a moderate impact in the 
northwestern part of the region. In addition, 
we can see that in both models, GWR and 

MGWR, the unemployment index had a strong 
relationship with COVID-19 death cases in 
the northeastern parts (Iran, Turkey, Iraq, and 
Syria) and had a relatively strong connection 
in the northwestern (Morrocco, Algeria, and 
Tunisia). Moreover, the total vaccine doses 
coefficient was extraordinarily strong in 
explaining the geographical distribution to the 
response variable in Iran for the GWR model 
and the region (Iran and Somalia) for the 
Multiscale-GWR model. 
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Figure 7. The effects of Hospital beds, %Unemployment, and Total vaccine doses in describing COVID-19 death cases us-
ing the MGWR model across the MENA region.
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Figure 8. Spatial distribution of local R^2  of GWR model for COVID-19 death cases associated with the significant covari-
ates across the MENA region.

Fig. 8 displays the spatial distributions of local 
R2 values for the GWR and Multiscale-GWR 
models. The lighter tints indicate lower values, 
whereas the deeper hues indicate greater 
ones. Although reasonable local R2 values 
were reported for all nations (Turkey and 
Morocco) and were found to be particularly 
well predicted by the models. Moreover, the 

explanatory variables expound at least 80% in 
(Iran and Iraq) according to both models, with 
Turkey and Morocco having the highest value 
at 85%.

Discussion

This GIS-based analysis, leveraging 
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geostatistical models, examined the spatial 
distribution of COVID-19 death rates across 
the MENA region using thirteen variables 
categorized into demographic, medical, and 
socioeconomic groups. Through a series of 
spatial regression and autoregressive models, 
we identified a combination of three key factors 
(hospital bed availability, unemployment 
rates, and total vaccine doses) as significant 
predictors of the variance in COVID-19 death 
rates across the region.
Since the residuals of the OLS model exhibited 
spatial autocorrelation, it was necessary to 
develop the Spatial Lag Model (SLM) and 
Spatial Error Model (SEM). The findings from 
these models, presented in Table 3, reinforce 
the importance of healthcare infrastructure 
and socioeconomic factors in explaining 
COVID-19 outcomes. Hospital beds showed 
positive coefficients of 0.3726 in the SLM 
and 0.3303 in the SEM, suggesting that 
areas with more hospital beds tend to have 
higher reported COVID-19 death cases. This 
relationship may be due to better reporting and 
higher accessibility to healthcare facilities, 
where more severe cases are documented 
and managed. Studies have similarly found 
that strain on hospital resources, such as ICU 
bed occupancy, correlates with higher excess 
death rates during periods of high COVID-19 
incidence.52, 53

Unemployment also showed positive 
coefficients in both models (0.0606 in the SLM 
and 0.0540 in the SEM), indicating that higher 
unemployment rates are associated with an 
increase in COVID-19 death cases. This could 
be attributed to economic and social stressors 
that increase vulnerability and reduce access 
to healthcare. The socioeconomic impact of 
unemployment has been shown to exacerbate 

health outcomes, including mortality rates 
during the pandemic.54, 55 Furthermore, the Total 
vaccine doses show a positive association with 
the death COVID-19 cases, with coefficients 
of 0.8110 in the SLM and 0.7949 in the SEM. 
This association might be misleading due to 
factors such as increased testing and reporting 
in areas with higher vaccination rates, or the 
initial surge in cases leading to increased 
vaccine distribution, as discussed in the results 
of Model 1.56, 57 Thus, while there appears to 
be a positive association between the number 
of vaccine doses administered and the number 
of COVID-19 death cases, this should not 
be interpreted as causation. The observed 
relationship may be influenced by various 
factors, including heightened reporting efforts 
or a time lag between vaccination campaigns 
and their impact on death rates.58, 59

The significant spatial autocorrelation 
coefficients, Rho (0.3134) in the SLM and 
Lambda (0.4077) in the SEM, emphasize the 
necessity of considering spatial dependence 
in the analysis. Rho indicates that confirmed 
cases in one area are influenced by those in 
neighboring areas, while Lambda suggests the 
presence of spatially correlated unobserved 
variables impacting the error terms. These 
findings underscore the need to account for 
spatial dependence in the models, with the 
SLM capturing it through the dependent 
variable and the SEM through the error term.
The GWR and MGWR models maps, revealed 
a high positive correlation between the death 
rate and the three key variables (hospital 
beds, unemployment, and total vaccine doses) 
highlighting the complex interplay between 
healthcare capacity, socioeconomic factors, 
and public health interventions in influencing 
COVID-19 outcomes. As the disease has 



47

Vol 10  No 1 (2024)

Geospatial Analysis of COVID-19 Death Cases and Influencing Factors ...

Shebani Aboalyem M et al. 

spread globally, serious weaknesses in 
healthcare systems, economic downturns, and 
rising unemployment rates have been evident. 
The findings are consistent with the significant 
role that medical interventions, particularly 
vaccination efforts, have played during the 
pandemic.
Despite providing valuable insights into the 
determinants of COVID-19 death cases in 
MENA countries, this study is not without 
limitations. Acknowledging these constraints 
is essential for a nuanced interpretation of the 
findings and to guide future research.
First, the reliance on spatial models, specifically 
Multiscale-GWR, may introduce inherent 
assumptions and limitations. While these 
models offer a comprehensive perspective 
on regional disparities, their effectiveness 
depends on the quality and accuracy of input 
data. Any inaccuracies or biases in the data 
could potentially impact model outcomes and 
subsequent interpretations.   
Second, the study's focus on the MENA region 
limits the generalizability of its findings to other 
global contexts. The unique socio-economic, 
cultural, and healthcare landscapes of MENA 
countries may introduce specific dynamics 
that are not applicable elsewhere. Therefore, 
caution is warranted when extrapolating results 
to different geographical regions.
Third, while the study focuses on three specific 
independent variables at the district level, 
which explain a substantial portion of reported 
deaths, it may overlook other pertinent 
variables that could contribute to a more 
comprehensive understanding of COVID-19 
death cases. Future research could explore a 
broader array of variables to refine and expand 
upon the current findings.
Fourth, the retrospective design of the study 

limits the ability to establish causality. While 
the study identifies associations between 
variables, it cannot definitively prove cause-
and-effect relationships. This limitation 
underscores the need for complementary 
research designs, such as prospective studies 
or randomized controlled trials, to validate and 
strengthen observed associations.
Finally, the study's acknowledgment that no 
prior research has undertaken spatial modeling 
of COVID-19 death cases in the MENA region 
highlights both the novelty and potential 
limitations of the research. The absence of a 
precedent may constrain the ability to directly 
compare findings with existing literature, 
emphasizing the importance of cautious 
interpretation and consideration of future 
research directions.
In conclusion, while this study significantly 
contributes to understanding COVID-19 death 
cases in the MENA region, it is essential to 
recognize its limitations. Addressing these 
constraints will facilitate a more comprehensive 
and nuanced interpretation of the findings, 
guiding researchers and policymakers in future 
endeavors aimed at addressing the ongoing 
challenges posed by the pandemic.

Conclusion

Addressing the factors that influence disease 
transmission and dissemination is crucial, 
particularly in the case of COVID-19, 
a coronavirus epidemic that has caused 
unparalleled worldwide shock. This research 
sought to uncover possible characteristics 
related to COVID-19 death numbers in MENA 
nations. The local models helped observe 
the connection between COVID-19 and the 
variables provided. Our findings confirmed 
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and extended the prior research since 
Multiscale-GWR had the greatest goodness of 
fit among the models. The different responses 
of COVID-19 death numbers to the selected 
predictor variables, may account for the 
geographical variation in Multiscale-GWR 
in other counties. At least 85% of reported 
fatalities at the district level are represented 
by the three independent variables included in 
all examined spatial regression models. This 
work may be valuable in the future, according 
to the best of our knowledge, no research has 
been undertaken in the MENA area utilizing 
COVID-19 spatial modelling.
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