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Background & Aim: In clinical dental studies, each participant has usually several visits, and since the 

review and ongoing monitoring of the subjects are often expensive or even impossible, so people are 

examined periodically during regularly pre-scheduled visits. Therefore, discrete or grouped clustered 

failure time data are collected. We aimed to show the use of Monte Carlo Markov Chain (MCMC) and the 

non-informative prior in a Bayesian framework in multilevel modeling of clustered grouped survival data. 
Methods & Materials: A two-level model with additive variance components model for the 

random effects was considered. Both the grouped proportional hazards model and logistic regression 

with logit link function model were used. Using grouped proportional hazards method, we could 

approximate intracluster correlation of the log failure times. The statistical package OpenBUGS was 

adopted to estimate the parameter of interest based on the MCMC method. A cohort study was used 

in which 1011 persons visited at clinic dentistry of Tehran University of Medical Sciences, Iran, 

between the years 2002 and 2013 for dental implant and 2368 implants were placed for them in 

total. Clinical status of dental implants was evaluated in three periods after placement, thus clustered 

grouped failure times of the dental implants were recorded. 
Results: The grouped proportional hazards model showed that clustering effect among the log failure 

times of the different implants from the same person was fairly strong (correlation = 0.99). 

Complication and biomaterial variables had no effect on the implant failure, and there was no 

difference in the failure times related to the molar, premolar, canine, primary, and incisor since 95% 

credible interval (CI) included 0. The CI related to the gender and place of teeth not including 0, so 

these variables were significant in the model. The estimates of the baseline parameters (γ1, γ2, and γ3) 

were increasing indicating increasing hazard rates from interval 1-3. Results of logistic regression were 

similar to grouped proportional hazards model with wider confidence intervals. 
Conclusion: The use of MCMC approach and non-informing prior in Bayesian framework to mimic 

maximum likelihood estimations in a frequentist approach in multilevel modeling of clustered 

grouped survival data can be easily applied with the use of the software OpenBUGS. 
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Introduction
1
 

In practice, monitoring the study subjects 

continuously is mostly expensive or even 

impossible; therefore, people are examined 
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periodically at some regular pre-scheduled visits. 

Hence, grouped or discrete clustered failure time 

data are collected. Marginal approach in 

analyzing discrete clustered failure time data was 

proposed by Ross and Moore (1) that the 

marginal hazard of failure for individual subjects 

within a cluster is specified by a linear log odds 

survival model and the dependence structure is 

based on a gamma frailty model.  
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The dependency parameter value in discrete 

model provides vague information in the 

dependency level but intracluster association 

remains unknown. These methods are not suitable 

for data with large cluster size since estimation 

process is too complicated in practice. Random 

effects approach in generalized linear mixed 

model uses maximum likelihood and residual 

maximum likelihood to estimate the regression 

and dependence parameters which were proposed 

by Lam and Ip (2). Logistic regression and 

grouped proportional hazards model are 

considered that regression parameters in these 

models can be, respectively, interpreted as natural 

logarithm of the odds ratio and the natural 

logarithm of the relative risks. Estimation of 

intracluster correlation between the natural 

logarithm of the failure times from a same cluster 

is computable when grouped proportional hazards 

model used. The suggested models assumed that 

individuals in a same cluster share invisible 

random effects. As Lam and Ip stated, expanding 

models into multilevel modeling of this type of 

data, using REML and ML methods to 

accommodate more complicated dependence 

structure is only possible theoretically and 

impossible in practice because the dimension of 

design matrix would be extremely large and 

makes the computation difficult particularly in 

the estimation of the variance of the dependence 

parameters. Numerical estimations will be 

unstable and empirical and asymptotic properties 

of estimators may not be close to each other for a 

fixed moderate cluster size and each estimator’s 

performance might be unknown. The aim of this 

article is to show the application of Monte Carlo 

Markov Chain (MCMC) and non-informative 

prior in Bayesian framework to mimic maximum 

likelihood estimations with the most common 

method in multilevel modeling of grouped 

survival data. The models considered in this 

article are extensions of the shared random effect 

models extended into multilevel modeling which 

are suggested by Lam and Ip (2) that allow a very 

general class of random effects models to 

accommodate situations with more complicated 

random effects structures. In clinical, it is 

important to predict future individual event using 

failure times and the covariate information from 

other observations in the same cluster, this class 

of generalized linear mixed models are preferred 

to marginal models because no prediction can be 

made with marginal models. The estimation will 

do by MCMC which is a popular tool for 

analyzing complex hierarchical data and 

regarding to advancements in computational 

technologies, it has found its way into the 

medical, public health, and dental arena. 

Methods 

A sample of 1011 persons visited at clinic 

dentistry of Tehran University of Medical 

Sciences between the years 2001 and 2012 for 

dental implant and 2368 implants were placed for 

them in total. Personal information of patients 

was gathered by direct questioning and 

information about implant was recorded by the 

respective doctor. The clinical status of dental 

implants was evaluated in three periods. Years 

2001-2004 is the first period, 2005-2008 is the 

second, and 2009-2012 is the third period. The 

clinical statue of implants was determined by 

Boozer criterions which are the lack of 

complaints about permanent pains or the feeling 

of external object or Distzy, lack of infection 

around the implant area with suppuration, lack of 

looseness, and lack of permanent radiolucency 

around implant. If any implant failed, it gets the 

code 1 and if not, it got the code 0. If a failure 

happens within a period, that period and the one 

after that gets the code 1 and if it does not fail all 

three periods get the code 0. Suppose that Tij is 

the failure time related to j
th
 implant from i

th
 

person (i = 1, 2…, n; j = 1, 2…, ni) measured in a 

continuous scale and xij is the p-dimensional 

vector of observed covariates associated with Tij. 

Conditioned on random effect of ei, Tij’s are 

mutually independent. Assume time axis is divided 

into mutually independent intervals where with  

as = 0 and ad = ∞. Furthermore, assume that sij = s 

be the event that j
th
 implant from i

th
 person fails in 

Is (i.e., as−1<Tij≤as). The conditional discrete hazard 

function λ is defined to be: 
 

λ(s│xij, ei) = P(Sij = s|Sij≥s, xij, ei)         (1) 

For modeling the conditional discrete hazard 

function (1) we use the binary regression with 

the general form λ with η and g is a 
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transformation that maps the whole real line 

(−∞, +∞), onto the unit interval l(0,1). γs  

(s = 1,…d) are a sequence of baseline 

parameters that show each interval has unique 

intercept and β is the vector of regression 

parameter. Two choices of g are of particular 

interest in this paper, the first case being the 

grouped proportional hazard regression model: 
 

g(η) = 1−exp [−exp (η)]          (2) 
 

And the second being the logistic regression: 
 

g(η) = exp (η)⁄[1+exp (η)]          (3) 
 

The covariate vector can be time-dependent 

by assuming that Xij is constant in each interval. 

Distribution of random effects which determines 

the dependency structure of data is required for 

complete specification of model, therefore it is 

assumed that random effect ei is consistent over 

time and normally distributed with a mean of 0 

and a variance of 
2
0 . Overall, the choice of the 

distribution of the random effect ei does not have 

strong impact on the estimate of β. As 
2
0  

characterizes the strength of association among 

individuals within the cluster, it is generally 

called the dependence parameter. Assume that 

failure time Tij is observed to have failed in or 

censored right after the interval. Failure 

indicator is defined in this way: 
 

*

*

1        if subject j of cluster i fails in                      

0        if subject j of cluster i survives through 

s

ijs

s

I
y

I


 


 

Therefore, the complete data log-likelihood 

function L can be expressed as: 
 

*
iji

ijs ijs

snn
y (1 y )

ijs ijs

i 1 j 1 s 1

L   [g( ) { 1 g( )} ] 


  

 
   (4) 

 

In which L is the conditional log-likelihood 

of Y taking the random effect e as fixed. 

Assume that 

i
*n

i ijj=1
m S  and 

n

ii=1
m m . 

We can express the log-likelihood function in 

the form of matrix by considering ηijl as m 

dimensional vector. 

η = Xβ
*
+Ze 

 

In which,                
      

  ,  

e
T
 = {e1,…,en} and X and Z are design matrices. 

Hence, by the usual Newton–Raphson 

iterative procedure for maximizing L with the 

set of initial values 
*
0  and e0 of β

*
 and e. The 

estimations of β
*
 and  e  can be obtained via 

updating the following equation:  
 

(  

 ̂
)  (  
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Matrix I is an identity matrix. The asymptotic 

variance-covariance matrix of the estimator β
*
 is 

given by A11. The maximum likelihood estimator 

of θ is obtained by the following equation:  
 

T 
ML

ˆ ˆ ˆ e e / (n R )ML    
 

And the asymptotic variance of 
ˆ
ML  can be 

estimated by the following equation:  
 

1
2 2 2

22
ˆ2 2      ( )ˆ

ML ML MLn R tr v 


   
   

 

Where, 
1 1

ML ML 22R θ  tr vˆ   and the residual 

maximum likelihood estimator of θ is obtained 

in the same way:  
 

T 
REML

ˆ ˆ ˆ e e / (n R )REML    
 

And the asymptotic variance of 
ˆ
REML  is like 

the following: 
1

2 2 2
222 2      ( )ˆ ˆ

REML REML MLn R tr A 


  
   

 

Where, 
1

REML REML 22R θ  tˆ r A  

In this article, based on likelihood of the 

observed data, Bayesian approach and imposing 

non-informative prior distribution for each of the 

parameters of interest we estimate the parameters. 

Variables γ1,…,γd, β1,…,βp are independently 

distributed according to N(0,φ1) and  
  

 ⁄  are 

independently distributed according to a gamma 

distribution of 1/φ1 and 1/φ2 where φ1 and φ2 are 

chosen to be very large in practice, say 1000. 

Under the assumption of exponential 

distribution for T, the correlation coefficient 
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logarithmic failure times from the same clusters 

is independent of independent variables and is 

like this (3): 
 

        (   )     (   )  
  

 

  
  

  

 

             

 

Where,   
  is the random effect variance of ei. 

Empirical results showed that these 

correlation coefficients are good approximation 

when the failure times follow a general 

proportional hazards model and are highly 

robust to the misspecification of the dependence 

structure of the random effects (2, 4).  

Results 

Both the grouped proportional hazards model 

and logistic regression model are considered here. 

A two-level model was considered that the implant 

or an implant tooth as level 1 unit and person is 

considered as level 2 unit. The sex variable (male 

x1 = 0, female x1 = 1) complication (there is a 

problem x2 = 0, there is no problem while surgery 

x2 = 1), biomaterial (the chemicals have been used 

x3 = 0, the chemicals have not been used x3 = 1), 

the place of tooth (upper jaw x4 = 0, lower jaw  

x4 = 1), and kind of tooth (molar tooth x5 = 1, x6 = 0, 

x7 = 0, x8 = 0, premolar tooth x6 = 1, x7 = 0, x8 = 0, 

canine tooth x5 = 0, x6 = 0, x7 = 1, x8 = 0, and 

primary tooth x5 = 0, x6 = 0, x7 = 0, x8 = 1) were 

included as covariates. The graphical presentation 

of the model which is drawn in OpenBUGS 

software (OpenBUGS Foundation, Helsinki, 

Finland) is like this figure 1.  

Where: 

 Mu[i]: is the indicator of changing average 

related to each implant which is dependent  on 

variables and other existing factors in model. 

 Q [I, int[i]]: each person’s failure 

possibility indicator. 

 Y[i]: is the indicator of failure status for 

each person. 

 Gender[i]: gender variable, complication: 

the variable of the existence of problem while 

doing surgery, location 1: the variable of tooth 

place, location1: Molar teeth location 2: 

Premolar tooth. Location 3: canine tooth and 

loc4 shows the primary tooth. 

 V[j]: shows the effect of each person that 

sigma 2. Child is the related variance and tau. 

Child is its accuracy. 

 Beta[j]: regression coefficients related to 

the parameters. 

 Gam[j]: shows the effect of each interval. 

 

 
Figure 1. Graphical presentation of the estimated 

survival models in the analysis of the implant teeth data 

 

In the estimation of the parameters, the first 

5000 simulations were treated as burn-ins and 

discarded while the estimation was based on the 

next 10,00,000 simulations. Parameter estimates 

of the two models are shown in tables 1 and 2. 

Results of the grouped proportional hazard 

model revealed that clustering effect among the 

log failure times of implants from the same 

person was fairly strong (correlation = 0.99). 

Complication and biomaterial variables have no 

effect on the implant failure, and there is no 

difference in the failure times related to the 

molar, premolar, canine, primary, and incisor 

since 95% credible interval (CI) included 0. The 

CI related to the gender and place of teeth not 

including 0 so these variables are significant in 

the model. 

The estimates of the baseline parameters (γ1, 

γ2, and γ3) were increasing indicating increasing 

hazard rates from interval 1-6. The simulation 

error related to all parameters is below 0.05, and 

it shows the convergence. Results of the logistic 

regression models were similar to those of the 

grouped proportional hazard model. 
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Table 1. Parameter estimates using OpenBUGS and grouped proportional hazards model results 

from 10,00,000 simulations after 5000 burn-ins 

Variable 
Grouped Proportional Hazards Model 

Median Confidence interval SD McErorr 

Sex −10.22 (−26.25, −1.296) 6.472 0.1972 

Complication −10.44 (−26.46, 1.661) 7.039 0.2187 

Biomaterial −8.337 (−22.03, 3.876) 6.477 0.197 

Location 1 −13.75 (−29.49, −5.18) 6.111 0.1757 

Location 1 −7.54 (−21.03, 1.251) 5.653 0.1664 

Location 2 −2.113 (−12.24, 5.288) 4.333 0.1196 

Location 3 −14.14 (−41.82, 1.959) 11.01 0.324 

Location 4 2.773 (−14.12, 21.01) 8.639 0.2669 

γ1 −53.23 (−92.0, −28.94) 16.22 0.2662 

γ2 −26.83 (−45.02, −14.27) 7.566 0.2368 

γ3 −25.5 (−43.49, 13.2) 7.46 0.2336 

       
  467.0 (−115.7, 1432.0) 338.0 10.41 

corrperson 0.993 (0.9724, 0.9977) 0.006 2.086E-4 
SD: Standard deviation 

 

Discussion  

Recently in dental research, different 

approaches have been proposed for handling 

clustered survival data with exact failure times 

(5-11). Different models and various Software 

like (SAS, S-plus) have been recommended for 

processing the analysis. In this study, the 

OpenBUGS software is used for analyzing the 

data in dentistry. The general multi-level 

formulas permit that we can study more 

incidental regression cases. 
Bayesian inference has several advantages 

over the usual approaches, particularly in the 
flexibility of model building for complex data. 
Bayesian inference enables us to make exact 
inference for any sample size without resorting to 
asymptotic calculations, where usual approach 

relies a lot on asymptotic approximation and 
always there is the issue of whether the sample 
size is large enough for the asymptotic 
approximation to be valid (12). In this paper, 
Bayesian analysis performed with the use of non-
informative priors and mimics usual approach. 

The choice of non-informative prior for the 

random parameters are not straightforward, and 

there exists no standard choice for non-

informative priors (13-15). 

In this paper, the choice of the inverse 

gamma as the non-informative prior is mainly 

for mathematical convenient purpose. Moreover, 

as remarked by Turner et al. (14) that an inverse 

gamma prior for the variance of the random 

effects often leads to improved bias and 

coverage properties when compared with a 

locally uniform prior. 
 

Table 2. Parameter estimates using OpenBUGS and logistic regression model results from 

10,00,000 simulations after 5000 burn-ins 

Variable 
Logistic regression model 

Median Confidence interval SD McErorr 

Sex −10.66 (−28.22, −0.3781) 7.167 0.1895 

Complication −10.51 (−29.66, 1.151) 7.944 0.2063 
Biomaterial −8.323 (−25.41, 3.999) 7.263 0.1771 
Location 1 −14.19 (−30.06, −5.418) 6.383 0.1669 
Location 1 −7.635 (−22.61, 1.18) 6.064 0.1433 
Location 2 −2.053 (−13.6, 5.509) 4.718 0.09597 
Location 3 −13.23 (−38.35, 1.086) 10.16 0.2372 
Location 4 3.949 (−14.15, 24.32) 9.448 0.1776 
γ1 −54.24 (−93.61, 28.05) 16.81 0.2888 
γ2 −26.88 (−47.52, 12.83) 9.012 0.2625 
γ3 −25.34 (−45.68, −11.63) 8.851 0.2568 

       
  519.8 (−124.6, 1478.0) 368.0 11.16 

SD: Standard deviation 
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Conclusion 

Comparing the results obtained from this 

analysis with those reported previously by 

treating the multiple failure times from the same 

person as independent observations by ignoring 

the clustering effects, the estimated survival rates 

obtained from this analysis were higher. Since the 

correlation of the log failure times of the different 

implants from the same person was fairly strong 

(correlation = 0.99). The analysis without 

considering this correlation was not appropriate, 

and the statistical inference may not be valid.  
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