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Background & Aim: Changes in the trend of births among women have been studied worldwide 

with indications of peaks and troughs over a specified period. Periodic variations in the number of 

births among women are unknown at the Korle-Bu Teaching Hospital (KBTH). This study sought to 

model and predicts monthly number of births at the Department of Obstetrics and Gynaecology 

(O&G), KBTH. 
Methods & Materials: Box-Jenkins time series model approach was applied to an 11-year data 

from the Department of (O&G), KBTH on the number of births from January, 2004 to December, 

2014. Box-Jenkins approach was put forward as autoregressive integrated moving average 

(ARIMA) model. Several possible models were formulated, and the best model, which has the 

smallest Akaike information criterion corrected (AICc) was selected. The best model was then used 

for future predictions on the expected monthly number of births for the year 2015. Analysis was 

performed in R statistical software (version 3.0.3). 
Results: Seasonal ARIMA (2,1,1) × (1,0,1)12 was selected as the best model because it had the 

smallest AICc. Furthermore, the forecasted values showed that the expected number of births were 

lowest in January (750 births) and highest in May (970 births) for the year 2015. 
Conclusion: Seasonal ARIMA (2,1,1) × (1,0,1)12 was identified as the model that best describes 

monthly expected births and its use to forecast the expected number of births at the KBTH in Ghana  

will facilitate formulation of health policies and planning for safe maternal delivery and prudent use 

of hospital obstetric services and facilities. 
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Introduction
1
 

Trends and variations in births among 

women over a period of time have been reported 

worldwide especially in Europe, America, and 

Asia. Bohun-Chudynivy et al. (1) reported a  

4.3 million births peak in 1960 in the United 
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States of America but gradually declined to  

3.1 million in 1970. However, the number of 

births peaked to over 4 million in the year 1989. 

Again, a study by Cohen (2) showed that the 

number of births declined from January to April. 

However, it kept increasing from May to mid-

September and onward, depicted many sharp 

increases and decreases, although generally a 

smooth trend was observed. In Portugal, Caleiro 

(3) showed that months of May and September 

recorded an increase in birth compared to 

months of December and February. 
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At the Korle-Bu Teaching Hospital (KBTH), 

observations reveal that the month of April is the 

peak period for births. During such periods the 

facility’s resources are overwhelmed, and 

patients may not be optimally managed resulting 

in increased maternal and perinatal mortality. 

Additional resources usually mobilized at the 

height of peaks in most instances become 

available after peak periods. This has financial 

implications as funds have been committed into 

these resources which may be under-utilized 

after the peak periods. Furthermore, monthly 

and yearly variation in birth at KBTH is 

unknown. Thus, the main objective of this study 

was to identify a time series model to describe 

birth data at the Department of Obstetrics and 

Gynaecology (O&G), KBTH. Specific objectives 

were to identify a model that best describes birth 

data and forecast the expected number of birth for 

each month for the year 2015. 

Methods 

Study design and site 

A time series analysis of data consisting of 

132 months of recorded number of births from 

2004 to 2014 at the Department of O&G, KBTH 

was used. The Department of O&G is one of the 

clinical departments at the hospital that caters 

for pregnant women and their unborn babies and 

any other pregnancy-related health 

complications. The department comprises five 

sub-specialties which are gynecological 

oncology, gynecological urology, maternal-fetal 

medicine, reproductive medicine, and 

community gynecology. The department has 240 

obstetric beds and 114 gynecologic beds. 

Data analysis 

Data obtained were captured in Microsoft 

Excel 2010 and analysis was performed in R 

statistical software version 3.0.3. Box-Jenkins 

(4) approach put forward as autoregressive 

integrated moving average (ARIMA) model was 

used for modeling. 

Autoregressive (AR) model: The AR model 

of order p, AR (p) takes the form: 

Yt=Ø1Yt−1+Ø2Yt−2+……+ØpYt−p+wt 

Yt denotes the current value of the series, Yt−1, 

……, Yt−p denotes the prior values of the same 

series while wt is the white noise and Ø1,……, 

Øp are the weights or coefficients. 

Moving average (MA) model: The MA model 

also of order q, MA (q) takes the form: 
 

Yt=wt+θ1wt−1+θ2wt−2+……+θqwt−q 
 

Yt denotes the current value of the series,  

wt, ……, wt-q are the white noise or shock and 

θ1…θq are the weights or regression coefficients. 

ARMA model: ARMA is a blend of both the 

AR with order p and MA with order q in the 

form: 
 

Yt=Ø1Yt−1+Ø2Yt−2+……+ØpYt−p+wt+θ1wt−1+

θ2wt−2+……+θqwt−q 
 

The ARIMA model: The ARIMA model is 

expressed as 𝜙 (𝐵) (1−𝐵)
d 
Yt=𝜃 (𝐵) 𝜔t where 

𝜙 (𝐵) is the operator for the AR term and is 

given as 𝜙 (𝐵) = 1−𝜙1B−𝜙2 B
2
− … −𝜙PB

P
 and  

θ (B) is the operator for the MA term and is 

given as θ (B) = 1+θ1B+𝜃2B
2
+ … +θqB

q
. 

Where p and q represent the number of lags 

for the AR and MA terms, respectively, and d is 

the order for the integration term. 
The Box-Jenkins approach involved model 

identification, parameter estimation, model 
diagnostics, and forecasting. A time series of the 

data was first plotted. The data were log 
transformed and plotted again. Non-stationarity 

was confirmed using augmented Dickey-Fuller 

(ADF) test on the transformed data. The 
transformed data were differenced once to attain 

stationarity accounting for the order d in the 
model. An autocorrelation function (ACF) plot 

was then used to determine the order (p) of AR 
and partial autocorrelation function (PACF) to 

determine the order (q) of MA. The model 
obtained was checked for seasonality and 

compared to other seasonal and non-seasonal 
models. The model with the smallest Akaike 

information criterion corrected (AICc) was 
selected as the best model. Diagnostic tests were 

done on the chosen models by performing a 
residual analysis to determine the adequacy of 

the models. The best model was used to forecast 
the expected number of birth for the next year 

(2015). Finally, predictive error (P.E) of the 

specified model was calculated to determine the 
robustness of the chosen model.  
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Results 

Model identification and parameter estimation 

A preliminary analysis was performed to 

ascertain the stationary or otherwise of the data 

as illustrated in figure 1.  

 

 
Figure 1. Time series graph of number of birth (left) 

and log-transformed of number of birth (right) 

 

The log-transformed plot of the number of 

births series exhibits a trend, therefore non- 

stationary. The ADF test confirmed that the series 

was not stationary (ADF= −3.38; P = 0.061). 

A first difference of the transformed data was 

then performed to achieve stationarity as 

illustrated in figure 2. The graph of the first 

difference appears stationary, and this was again 

confirmed by performing the ADF test  

(ADF = −6.82; P = 0.010). 

 

 
Figure 2. Time series graph of first difference 

 

Figure 3 shows an ACF spike on lag 1 which 

exceeds the significance bounds (Figure 3). 

Likewise, from the PACF, there is also a spike 

on lag 1 which exceeds the significance bounds 

(Figure 3). Hence, the model ARIMA (1,1,1) 

was selected. 

 
Figure 3. Sample autocorrelation function and partial 

autocorrelation function graph of first difference series 

 

The estimated coefficient of the AR model 1 

(AR1) was found to be 0.700, and that of the 

MA model 1 (MA1) was −1.000 with standard 

errors 0.066 and 0.024, respectively. The 

estimated value of the constant term was 7e-04 

with a standard error of 9e-04. The AICc of the 

model was −153.38. 

Model diagnostic of ARIMA (1,1,1) 

Plot of the residuals: The plot was fairly 

random even though few of the observations are 

likely to be outliers as shown in figure 4. 

Further, tests of normality and autocorrelation of 

the residuals suggested that these outliers have 

no influence on the series. 

 

 
Figure 4. Graph of the standardized residuals of 

autoregressive integrated moving average (1,1,1) 

 

Test of normality of the residuals: The normal 

Quantile-Quantile graph for the residuals from the 

model ARIMA (1,1,1) displayed some form of 

normality (Figure 5) and was confirmed using 

Shapiro-Wilk normality test (W = 0.99, P = 0.483). 

Test of autocorrelation of the residuals: The 

plot of the residuals was fairly random and 

independent based on the sample ACF as shown 

in figure 6. The P values of the Ljung-Box test 

were all above the significant boundary (chi-

squared = 21.106, P = 0.391). 
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Figure 5. Normal Quantile-Quantile graph 

autoregressive integrated moving average (1,1,1) model 

 

Test of other ARIMA Models: Several non-

seasonal seasonal ARIMA models were 

estimated to determine whether any is likely to 

be superior to the ARIMA (1,1,1) obtained. 

 

 
Figure 6. Diagnostic display of autoregressive 

integrated moving average (1,1,1) model 

 

Non-seasonal ARIMA model estimation: 

ARIMA (1,1,1) had a minimum AICc (−153.38) 

as compared to all the other estimated non-

seasonal ARIMA models; hence none of the 

non-seasonal ARIMA models estimated was 

found better than the ARIMA (1,1,1) model. 

Seasonal ARIMA model estimation: 

SARIMA (2,1,1) × (1,0,1)12 model had the least 

AICc and was thus selected as shown in table 1. 

Model diagnostic of SARIMA (2,1,1) × 

(1,0,1)12 

Table 1. SARIMA models 

Model AIC AICc BIC 

SARIMA 

(3,1,1)(1,1,1)12 

−130.00 −129.76 −111.30 

SARIMA 

(3,1,1)(1,0,1)12 

−162.71 −161.80 −142.59 

SARIMA 

(3,1,1)(0,0,1)12 

−157.71 −156.49 −139.91 

SARIMA 

(3,1,1)(1,0,0)12 

−158.43 −157.75 −141.18 

SARIMA 

(3,0,1)(1,1,0)12 

−119.16 −118.41 −102.43 

SARIMA 

(3,0,1)(0,1,0)12 

−103.09 −102.56 −89.15 

SARIMA 

(3,0,1)(0,1,1)12 

−140.15 −139.41 −123.42 

SARIMA 

(3,0,2)(1,1,1)12 

−136.86 −135.56 −114.56 

SARIMA 

(3,0,2)(0,1,1)12 

−138.17 −137.17 −118.66 

SARIMA 

(3,0,2)(0,1,0)12 

−101.50 −100.76 −84.77 

SARIMA 

(3,0,2)(1,1,0)12 

−118.39 −117.39 −98.88 

SARIMA 

(1,1,1)(1,0,0)12 

−160.57 −160.25 −149.07 

SARIMA 

(1,1,1)(1,0,1)12 

−163.98 −163.50 −149.60 

SARIMA 

(1,1,1)(0,0,1)12 

−159.55 −159.23 −148.05 

SARIMA 

(1,1,2)(0,0,1)12 

−158.8 −158.32 −144.42 

SARIMA 

(1,1,2)(1,0,0)12 

−160.26 −159.73 −145.88 

SARIMA 

(2,1,1)(1,0,1)12 

−164.21 −163.53 −146.96 

SARIMA 

(2,1,1)(1,0,0)12 

−160.38 −159.90 −146.00 

SARIMA 

(2,1,1)(0,0,1)12 

−158.95 −158.47 −144.58 

SARIMA 

(2,1,0)(1,0,1)12 

−157.06 −156.58 −142.69 

SARIMA 

(2,1,0)(1,0,0)12 

−151.10 −150.79 −139.60 

SARIMA 

(2,1,0)(0,0,1)12 

−149.07 −148.75 −137.57 

SARIMA: Seasonal autoregressive integrated moving average, 

AICc: Akaike information criterion corrected, AIC: Akaike 

information criterion, BIC: Bayesian information criterion 

 
Residual analysis of SARIMA (2,1,1) × 

(1,0,1)12 

Plot of residuals: Figure 7 showed the graph 

of the standardized residuals (Figure 7) with 

fairly random observations through some of the 

observations are likely to be outliers. 
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Figure 7. Graph standardized residuals of seasonal 

autoregressive integrated moving average (2,1,1) × 
(1,0,1)12 

 

Test of normality of the residuals of SARIMA 

(2,1,1) × (1,0,1)12: The graph of the residuals 

displayed some form of normality as shown in 

figure 8 and this was further confirmed by 

Shapiro-Wilk normality test (W = 0.984,  

P = 0.120). 

 

 
Figure 8. Normal Quantile-Quantile graph of seasonal 

autoregressive integrated moving average (2,1,1) × 
(1,0,1)12 model 

 

Test of autocorrelation of the residuals: It 

was shown in figure 9 that the plot of the 

residuals looks fairly random. The residuals 

appear independent based on the sample ACF. 

In addition, the P values of the Ljung-Box test 

were all above the significant boundary (chi-

squared = 14.45; P value = 0.806). 

 
Figure 9. Test of autocorrelation function residuals of 

seasonal autoregressive integrated moving average 
(2,1,1) × (1,0,1)12 model 

 

Forecasting 

Table 2 summarized the expected number of 

births per month for the O&G Department at the 

KBTH for the next 12 months in 2015 with 95% 

confidence interval (CI). The results from the 

forecast showed that the number of birth increased 

from the month of January through to the month of 

May. It tends to decline from the month of May 

through to the month of September and showed a 

slight increase from the month of September to 

November then declining in December. The 

forecasted values of the periods for 2015 are 

indicated in the shaded regions of figure 10. 

 
Table 2. Expected number of births per month for the 

year 2015 

Year 2015 Forecast 
Lower limit 

at 95% 

Upper limit 

at 95% 

January 756 598 956 

February 760 577 1000 

March 864 640 1165 

April 881 643 1205 

May 967 701 1335 

June 944 681 1310 

July 890 639 1238 

August 868 622 1210 

September 822 589 1148 

October 831 595 1161 

November 842 603 1177 

December 823 589 1151 
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Figure 10. Forecasted values for seasonal 

autoregressive integrated moving average (2,1,1) × 
(1,0,1)12 model 

 

Robustness of the model (SARIMA [2,1,1] × 

[1,0,1]12) 

The P.E for SARIMA (2,1,1) × (1,0,1)12 was 

0.1 as shown in table 3. 

 
Table 3. Predictive error of the seasonal ARIMA 

(2,1,1) × (1,0,1)12 

Year 2014 

Actual 

value 

(A.V) 

Predictive 

value 

(P.V) 

    
      

   
      

January 946 925 −2.2 

February 948 888 −6.3 

March 1124 950 −15.5 

April 1175 887 −24.5 

May 1224 934 −23.7 

June 1018 969 −4.7 

July 962 959 −0.3 

August 999 919 −8.0 

September 834 900 7.9 

October 663 921 38.9 

November 778 902 15.9 

December 717 879 22.6 

  P.E=0.1 
ARIMA: Autoregressive integrated moving average 

Discussion  

The log-transformed plot of the number of 

births (right plot) as shown in figure 1 over the 

period studied exhibits an upward trend from 2007 

to 2014 indicating non-stationary series  

(ADF = −3.38; P = 0.061). However, stationarity 

was attained (ADF = −6.8167; P = 0.010) on a first 

difference (Figure 2) of the transformed data. 

ARIMA (1,1,1) was selected because it 

showed a spike on lag 1 for both ACF and 

PACF. Although few of the observations in the 

model were noted to be possible outliers (Figure 

4), further tests of normality and autocorrelation 

of the residuals of the model suggested that 

these outliers had no influence on the series  

(W = 0.99, P = 0.483) (Figure 5). 

The ARIMA (1,1,1) model was found to be a 

good model and does not exhibit lack of fit as all 

the P values of the Ljung-Box test were above 

the significant boundary (chi-squared = 21.106, 

P = 0.391) (Figure 6). 

Other seasonal and non-seasonal models 

were formulated and compared to ARIMA 

(1,1,1). ARIMA (1,1,1) had the minimum AICc 

(−153.38) as compared to the other non-seasonal 

ARIMA models (Table 4). Hence, ARIMA 

(1,1,1) model was found superior to the other 

models estimated (Table 4). 

 
Table 4. Non-seasonal ARIMA models 

Model AIC AICc BIC 

ARIMA (1,1,0) −143.28 −143.28 −134.65 

ARIMA (0,1,1) −144.06 −143.87 −135.44 

ARIMA (2,1,0) −141.06 −141.31 −130.13 

ARIMA (2,1,1) −152.12 −151.64 −137.75 

ARIMA (2,1,2) −150.83 −150.15 −133.58 

ARIMA (3,1,0) −142.68 −142.20 −128.31 

ARIMA (3,1,1) −150.87 −150.20 −133.62 

ARIMA (3,1,2) −152.05 −151.14 −131.92 

ARIMA (1,1,2) −152.05 −151.57 −137.67 
ARIMA: Autoregressive integrated moving average, AICc: Akaike 
information criterion corrected, AIC: Akaike information criterion, 

BIC: Bayesian information criterion 

 

Most SARIMA models (Table 1) have 

minimum AICc compared to ARIMA model 

(1,1,1). SARIMA (2,1,1) × (1,0,1)12 had the least 

AICc (AICc = −163.53) and was thus chosen. It 

had estimated coefficients for the AR1 and AR2, 

0.611 and 0.135, respectively, with standard 

errors (AR1 = 0.090; AR2 = 0.091). 

The estimated coefficient for the MA1 was 

−0.999 with a standard error of 0.018. The 

seasonal autoregressive component of the model 

(SAR1) yielded estimated coefficient of 0.994 

with a standard error of 0.053. Likewise, the 

estimated coefficient and standard error for 

seasonal moving average were −0.944 and 

0.253, respectively. The general equation for the 

SARIMA model is: 
 

(1−ψpB)(1−ΦpB
S
)(1−B)(1−B

S
)yt=(1+θqB)(1+

ΘQB
S
)wt 
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Where:  

(1−ψpB) and (1−ΦpB
S
) are the respective 

non-seasonal and SAR models component. 

(1−B)(1−B
S
) is the difference factor for both 

non-seasonal and seasonal. 

(1+θqB) and (1+ΘQB
S
) are the MA models 

for non-seasonal and seasonal component, 

respectively, with wt as the white noise. 

Hence, the equation of the seasonal ARIMA 

(2,1,1) × (1,0,1)12 was found to be: 

(1−0.6109B−0.1354B
2
)(1−0.9941B

12
)(1−B)

Yt=(1+(−0.999B))+(1+(−0.9441B
12

))wt 

A test of the SARIMA model obtained 

showed that the standardized residuals (Figure 7) 

were fairly random and further tests suggested 

that the residuals were normally distributed  

(W = 0.984, P = 0.120) (Figure 8). The residuals 

appeared independent based on the sample ACF. 

In addition, the P values of the Ljung-Box test 

were all above the significant boundary, which 

shows a good model (chi-squared = 14.45;  

P = 0.806) (Figure 9) not exhibiting lack of fit. 

A P.E used in determining the robustness or 

applicability of the model yielded a value of 0.1 

(Table 3). The minimal value yielded by the PE 

showed the robustness or usability of the model. 

Based on the model we obtained, the monthly 

expected number of births for 2015 was 

forecasted (Figure 10). The highest expected 

number of births was predicted to occur in May 

(births = 967; CI = 701-1335) while the least 

expected births were predicted in January  

(births = 756; CI = 598-956). 

Conclusion 

Seasonal ARIMA (2,1,1) × (1,0,1)12 model 

was identified as the best model that describes 

monthly expected births. The model equation 

was found to be: 

(1−0.6109B−0.1354B
2
)(1−0.9914B

12
)(1−B)

Yt=(1+(−0.999B))(1+(−0.9441B
12

))wt 
 

The monthly forecasted number of births for 

the year 2015 showed a peak in May and trough 

in January. The use of this model to forecast the 

expected number of births at the KBTH in 

Ghana will facilitate the formulation of health 

policies and planning for safe maternal delivery 

and prudent use of hospital obstetric services 

and facilities.  
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