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Introduction: Many experts in the field of distribution theory have focused on extending probability 
distributions utilizing extended families of continuous distributions to improve the modeling adaptability of 
the conventional probability distributions. 
Methods: This research employed a continuous family of probability distributions as introduced in the 
literature using the T-X methodology. Through this, some of statistical and mathematical properties of the 
model were derived and studied. 
Results: This study had introduced a brand-new, five-parameter generalized exponentiated exponential 
distribution, which is a continuous probability distribution. With the aid of the quantile function, moments, 
moment generating function, survival function, hazard function, mean, and median, among other mathematical 
and statistical aspects, the new distribution's shape was deduced and researched. It was also possible to derive 
the probability density function for the minimum and maximum order statistics for this distribution. The 
method of maximum likelihood estimate was used to produce a conventional estimation of the unknown 
parameters. A simulation study was carried out to assess the efficiency and consistency of the estimation 
method used. To evaluate the fit and adaptability of the new model, it was applied to four real-world datasets 
in the field of medicine. 
Conclusion: The analysis's findings demonstrated that the new model performs better than its counterparts and 
offers a better fit than the Topp-Leone exponentiated exponential, Topp-Leone Kumaraswamy exponential, 
exponentiated exponential, and exponential distributions.
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Introduction

In the past ten years, researchers have been 
working to develop more robust and flexible 
distributions that would better reflect life's 

realities. To improve lifetime data analysis's 
capacity to match a variety of lifetime 
data with a high degree of skewness and 
kurtosis, numerous methods for creating new 
continuous distributions have been presented 
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in the literature. This is accomplished by 
using new families of distributions and the 
inclusion of additional shape parameters 
to characterize data from a wide range of 
disciplines, including engineering, economics, 
biomedical sciences, environmental sciences, 
and others. Some families of distributions 
used in adding flexibility to the classical 
distributions proposed in the literature can be 
found in, etc.1-11

Probability distributions are used in 
biological statistics to model the uncertainty 
surrounding measurements, clinical trials, 
and other research investigations. The field of 
biomedical statistics is expanding quickly as 
more data become available and new statistical 
techniques are created that enable the analysis 
of more intricate topics relating to human 
health. Using the family of distributions 
put forth by12-13 recently developed a three 
parameter exponential distribution and applied 
the model to Engineering and Medical data 
sets. The model was demonstrated to be very 
adaptable and to outperform its counterparts. 
For additional information on this topic, the 
reader is directed to.14-22

The aim of this work is to develop a 
new distribution called new generalized 
exponentiated exponential distribution, 
which is an extension of exponentiated 
exponential distribution, this research will 
use the exponentiated exponential model 
as a baseline to the family of distributions 
developed by.3 To assess the applicability and 
flexibility of the proposed model, it is fitted 
to four actual data sets derived from the field 
of biomedical sciences.

Methods
New Generalized Exponentiated Exponential 
(NGEtEx) Distribution

This section derives the new model using 
the family of distributions proposed by.3 The 
cumulative distribution function (cdf) and the 
probability density function (pdf) of the family 
are respectively given as: 

                                                                   (1)[ ]( ) 1 1 ( )F y G y
ργσ = − − 
 

and

                                                                   (2)[ ] [ ]
11( ) ( ) 1 ( ) 1 ( )f y g y G y G y

ργσ γσγσρ
−−  = − − 

where  g(y) and G(y) are the pdf and cdf of the 
baseline distribution.

y > 0 and  , , 0γ σ ρ >

The cdf and pdf of exponentiated exponential 
distribution are given respectively as:

( ) 1 yG y e
θβ− = −                                      (3)

and 

1
( ) 1y yg y e e

θβ ββθ
−− − = −                             (4)

y > 0 and , 0β θ >

The new generalized exponentiated exponential 
distribution is obtained by inserting equation 
(3) into equation (1) as

( ) 1 1 1 yF y e
ρσγθβ−   = − − −                         (5)

On differentiating equation (5) with respect to 
y, we have
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( ) 1 1 1 1 1 1y y y yf y e e e e

ργσ σγθ θ θβ β σ βρσγθβ
−−−− − − −         = − − − − − −             

                                                                   (6)
0, , , , , 0x σ γ ρ β θ> >

Where β is γ, ρ, β, θ  the scale parameter and  
are the shape parameters respectively.

Expansion of Density

The expression for generalized binomial 
expansion is given as:

( ) ( ) ( )
( )

1

0

1
1

!

i
i

i
y y

i i
ρ ρ

ρ

∞
−

=

− Γ
− =

Γ −∑                        (7)

Using a generalized binomial expansion given 
in equation (7), we have the expansion for the 
density of the new model given as:

( ) ( ) ( ) ( )
( ) ( ) ( )

1

0 0 0

1 ( 1) ( 1)
( )

! ! ! ( 1) ( 1)
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 =  Γ − Γ + − Γ + −∑∑∑

                                                                    (8)

Properties of NGEtEx Distribution

In this section, the properties of the new model 
such as moments, mean, moment generating 
function, quantile function, median, hazard 
function, survival function and order statistics 
are derived and studied.  

Moments

0
( ( ))r rE yy dfY y

∞
= ∫                              (9)
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                                                                 (10)
To obtain the mean, we set  in equation (10)
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                                                                   (11)

Moment generating function (mgf)

0
( ) ( )y
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where the expansion of 
0 !
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Therefore, mgf of the new generalized 
exponentiated exponential distribution is given 
as
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                                                                   (13)
Quantile function

Quantile function is the inverse of cdf of a 
distribution. The quantile function is obtained 
using 

1( ) ( )Q u F u−=                                          (14)

Applying equation (13) to the cdf of the new 
model, we have the quantile function given as

( )
1

1
11 log 1 1 1y u

θ
σγ

ρ

β

    = − − − −        

                                                                   (15)

The median is obtained by setting u = 0.5 in 
equation (15) given as

( )
1

1
11 log 1 1 1 0.5mediany

θ
γσ

ρ

β

    = − − − −                                                                            
                                                                   (16)
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Hazard function

Hazard function is given as

( )( )
( )

f yy
S y

Η =                                                                 (17)

The hazard function of the NGEtEx distribution 
is given as

111
1 1 1 1 1 1

( )
1 1 1 1

y y y y

y
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         − − − − − −             Η =
   − − − −                                                                      (18)

Survival function

It can be defined as

S (y) = 1 - F (y)                                        (19)

( ; , , ) 1 1 1 1 yS y e
ρσγθβσ γ ρ −   = − − − −     
          (20)

Order Statistics

Let Y1, Y2, … Yn be n  independent random 
variable from the NGEtEx distributions and let   
Y(1) ≤ Y(2) ≤  … ≤ Y(n)   be their corresponding 
order statistic. Let Fr:n(y) and fr:n(y), r=1, 2, 
3, … n denote the cdf and pdf of the rth order 
statistics Fr:n respectively. The pdf of the rth 

order statistics of Yr:n  is given as

1
:
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Minimum order statistics

We set  in equation (22) to obtain the minimum 
order statistics of the NGEtEx distribution.

1:
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                                                                (23)

Maximum order statistics

We set r = n in equation (22) to obtain the 
maximum order statistics of the NGEtEx 
distribution.

:
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The method of maximum likelihood estimation 
(MLE) is used in this section to estimate 
the unknown parameters of the NGEtEx 
distribution. For a random sample, Y1, Y2,… Yn 
of size n from the NGEtEx(ρ, σ, γ, β, θ), the 
log-likelihood function L(ρ, σ, γ, β, θ),  of (6) 
is given as

1 1 1

1

log log log log log

( 1) log 1 ( 1) log 1 1

( 1) log 1 1 1

i i

i

n n n
y y

i
i i i

n
y

i

l n n n n n

y e e

e

θβ β

σγθβ

γ ρ σ θ β β

θ σγ

ρ

− −

= = =

−

=

= + + + + −

    + − − + − − − +     

   − − − −     

∑ ∑ ∑

∑

                                                                   (25)

To obtain the estimate of the unknown 
parameters, the log-likelihood equation is 
differentiated with respect to each parameter  
(ρ, σ, γ, β, θ) and equate to zero as:
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Equations (26), (27), (28), (29) and (30) do not 
have a simple analytical form and are therefore 
not tractable. As a result, we have to resort to 
non-linear estimation of the parameters using 
an iterative method.

Results

This section presents some plots of the new 
model to show the shapes of the model and 
also, the results obtained from the analysis with 
respect to the applications are presented. 

Simulation and Applications

This section presents a simulation study to 
assess the efficiency of the estimation method 
used and also discussed the practical application 
of the new model to assess its flexibility, 
robustness and fit in modelling data arising 
from biomedical science.
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Simulation Study

A simulation study is performed to assess 
the efficiency of the mle. The precision of 
the mle is studied through bias, and the root 
mean square error (RMSE) for taking different 
samples by considering different parameter 
values. We performed 1000 repetitions from 
NGEtEx distribution to quantify the bias and 
RMSE, by taking samples of sizes n = 20, 50, 
150, 200, 250, 300 and the initial values of the 
model parameters (ρ, θ, σ, β, γ) are chosen as 
(1.0, 1.0, 1.0, 1.0, 2.5).
Using the Akaike information criterion (AIC), 
the performance of the new model is compared 
with other existing distributions that are 
consistent with the baseline distribution in 
terms of providing good parametric fit to the 
data sets considered.

AIC = -2ll + 2 K                                       (31)
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The model selection is carried out using the 
AIC. Where ll denotes the log-likelihood 
function evaluated at the maximum likelihood 
estimates, K is the number of parameters in the 
model.
The model with smallest value of AIC is chosen 
as the best model to fit the data set better. 
The comparators presented are: Topp-Leone 
Kumarasawamy exponentiated exponential 
(TLKEx), Topp-Leone exponentiated 
exponential (TLEtEx), Topp-Leone exponential 
(TLEx), exponentiated exponential (EtEx) and 
exponential (Ex) distributions.

Data set 1 was given by23 and represents the 
lifetime data relating to relief times (in minutes) 
of patients receiving an analgesic.
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 
1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.
Data set 2 has been used by24 and represents the 
sum of skin folds in 202 athletes collected at the 
Australian Institute of Sports as.
28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 
46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 
110.2, 98.1, 57.0, 43.1, 71.1, 29.7, 96.3, 102.8, 
80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 
38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 131.9, 68.3, 
52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 
106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 
100.7, 80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 
50.9, 31.8, 44.0, 56.8, 75.2, 76.2,101.1, 47.5, 
46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 87.2, 
52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 
37.6,52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 
46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 
52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 
74.7, 77.0, 62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 
61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 
61.1, 31.0, 41.9, 75.6, 76.8, 99.8, 80.1, 57.9, 
48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 

80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 
52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 
44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 
136.3, 42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 
99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 
37.5, 96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 
46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 
47.6, 60.4, 34.9.
Data set 3 was given by25 and it represents 
the remission times (in months) of a random 
sample of one hundred and twenty-eight (128) 
bladder cancer patients.
0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 
0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 
2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 
2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 
2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 
3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 
4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 
2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 
2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 
2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 
2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 
3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 
12.63, 22.69.
Data set 4 was given by26 and it represents the 
survival times of one hundred and twenty-one 
(121) patients with breast cancer obtained from 
a large hospital in a period from 1929 to 1938.: 
The data set is as follows: 
0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 
8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 
14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 
17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 
21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 
28.2, 29.1, 30.0, 31.0, 1.0, 32.0, 35.0, 35.0, 
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37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 
40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 
43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 
48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 
56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 
62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 
80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 
105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 
126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

Discussion

From Table 1, it is shown that the estimated 
RMSEs tend towards zero as sample size 
increases. Also, the biases decrease as the 
sample size increases. The numerical results 
presented revealed the consistency of the mles.
Figures 1 and 2 show how the new model is 
shaped. The new model has symmetric, positive 
and negative skewness, increasing, decreasing, 
and constant shapes depending on the value 
of each parameter, as can be seen from the 
figures. It can also be seen that the figure 2 
portraying the hazard function has an inverted 
bathtub shape. Due to these characteristics, the 
model can be used to represent various types of 
medical research data.  
Tables 2, Table 3, Table 4, and Table 5 display 
the estimated values for each parameter and 
the models' goodness of fit. The effectiveness 
metric used to assess the goodness of fit is AIC. 
When the AIC values are lower, the model 
performs better. The NGEtEx distribution has 
the lowest AIC, which makes it more adaptable 
for modeling the data sets, as can be seen from 
the tables.
Figures 3, 4, 5, and 6 display the new model's 
shapes, fit, and adaptability in relation to the 
data sets under examination. The four data sets 
under examination are matched by the new 

model, making it a good fit for the data sets.

Figure 1. Plots of pdf of the NGEtEx distribution for 
different parameter values

Figure 2. Plots of hazard function of the NGEtEx 
distribution for different parameter values

Conclusion

The novel generalized exponentiated 
exponential distribution, which is created in this 
work, expands the exponentiated exponential 
distribution. The survival function, hazard rate 
function, quantile function, mean, median, and 
order statistics could all be extracted from the 
new distribution. The maximum likelihood 
method was used to estimate the model 
parameters using the R package Adequacy 



491

Vol 9  No 4 (2023)

On The Modeling of Biomedical Data Sets with a New Generalized  ...

Kolawole IA et al. 

Table 1. MLEs, biases and RMSE for some values of parameters
N Actual parameter value Estimate Bias RMSE
20 ρ  =1.0

θ =1.0
σ =1.0

β =1.0
γ =2.5

1.3190
1.1092 
1.1685 
1.4097 
2.6945

0.3190
0.1092
0.1685
0.4097
0.1945

0.9724
0.4813
1.0346
1.2754
0.9377

50 ρ  =1.0
θ =1.0
σ =1.0

β =1.0
γ =2.5

1.2022
1.1064
1.0739
1.2396
2.6309

0.2022
0.1064 
0.0739 
0.2396 
0.1309

0.7092
0.2851
0.8885
0.9263
0.8306

100 α  =1.0
θ =1.0
σ =1.0

β =1.0
γ =2.5

1.2017 
1.0426 
1.0348 
1.2236 
2.6139

0.2317
0.0426 
0.0348  
0.2236  
0.1139

0.6363
0.2158 
0.7863 
0.7342 
0.8130

150 ρ  =1.0
θ =1.0
σ =1.0

β =1.0
γ =2.5

1.0153 
1.0212 
1.0227 
1.2140 
2.5669

0.0153 
0.0212 
0.0227  
0.2140  
0.0669

0.6185 
0.2016 
0.6063 
0.6430 
0.7345

200 ρ  =1.0
θ =1.0
σ =1.0

β =1.0
γ =2.5

1.0132 
1.0122 
1.0111 
1.1141 
2.5404

0.0132 
0.0122 
0.1111  
0.1141  
0.0404

0.5712 
0.1887 
0.5422 
0.6247 
0.6354

250 ρ  =1.0
θ =1.0
σ =1.0

β =1.0
γ =2.5

1.0122 
1.0101 
1.0015 
1.0249 
2.5310

0.0122 
0.0101 
0.0015 
0.0249 
0.0310

0.4431 
0.0459 
0.3274 
0.5285 
0.5293

300 ρ  =1.0
θ =1.0
σ =1.0

β =1.0
γ =2.5

1.0010 
1.0100 
1.0011 
1.0123 
2.5101

0.0010 
0.0100 
0.0011  
0.0123  
0.5101

0.2213 
0.0213 
0.1212 
0.3197 
0.3018
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Table 2. The models’ MLEs and performance requirements based on data set 1

Models β̂ θ̂ γ̂ ρ̂ σ̂ ll AIC

NGEtEx 8.8613 1.4998 10.0351 28.3239 0.0239 -15.6627 41.3255
TLKEx 3.6229 20.9791 0.3069 -    2.3729 -16.8229 41.6458
TLEtEx 0.9618 0.1970 1.8931 -    -     -17.8662 41.7324
TLEx 0.6435 6.5611 -    -    -     -19.6989 43.3978
EtEx 1.4751 9.4746 -    -    -     -18.3418 40.6836
Ex 0.5263 -    -    -    -     -32.5263 67.3373

Table 3. The models’ MLEs and performance requirements based on data set 2

Models β̂ θ̂ γ̂ ρ̂ σ̂ ll AIC

NGEtEx 0.1809 6.4969 0.4963 4.9049 0.4315 -955.4767 1920.9530
TLKEx 0.1704 12.8171 0.1225 -    0.2887 -958.8534 1925.7070
TLEtEx 0.0194 12.0124 0.7716 -    -     -957.5719 1921.1440
TLEx 0.0203 8.5858 -    -    -     -958.6400 1921.2800
EtEx 0.0203 8.5753 -    -    -     -958.6500 1921.3000
Ex 0.0144 -    -    -    -     -1057.3560 2116.7120

Table 4. The models’ MLEs and performance requirements based on data set 3

Models β̂ θ̂ γ̂ ρ̂ σ̂ ll AIC

NGEtEx 0.4309 2.5357 0.1234 0.6824 1.9293 -411.8115 833.6230
TLKEx 0.3988 2.0262 0.1695 -    0.4392 -414.7476 837.4952
TLEtEx 0.0677 0.6014 1.8081 -    -     -414.5583 835.1167
TLEx 0.0606 1.2181 -    -    -     -415.0776 834.1552
EtEx 0.0606 1.2190 -    -    -     -415.0776 834.1554
Ex 0.1068 -    -    -    -     -416.3419 833.6838

Table 5. The models’ MLEs and performance requirements based on data set 4

Models β̂ θ̂ γ̂ ρ̂ σ̂ ll AIC

NGEtEx 0.2265 0.2369 0.3539 2.2602 0.3771 -578.8936 1167.7870
TLKEx 0.0787 1.9700 0.1807 -    0.5819 -579.9097 1167.8190
TLEtEx 0.0142 1.1241 1.2356 -    -     -580.8998 1167.7996
TLEx 0.0135 1.4254 -    -    -     -582.7919 1169.4182
EtEx 0.0135 1.4248 -    -    -     -582.7091 1169.4182
Ex 0.0217 -    -    -    -     -584.4785 1170.9570
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Figure 3. Estimated density plots for data set 1
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Figure 4. Estimated density plots for data set 2
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Figure 5. Estimated density plots for data set 3
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Figure 6. Estimated density plots for data set 4
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Model. A simulation study is carried out to 
assess the consistency of the mle and the 
results of applying the proposed distribution to 
four actual data sets derived from the field of 
medical sciences are displayed in Table 1, Table 
2, Table 3, and Table 4. The results showed that 
the four data sets under examination could be 
fitted substantially better and with far greater 
power by the new generalized exponentiated 
exponential distribution. Figures 3, 4, 5, and 6 
for the four data sets' estimated densities, Q-Q 
plots, and P-P plots further demonstrate how 
flexible the new model is.
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