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Introduction: In the last few decades, in many research fields, different methods were introduced to discover 
groups with the same trends in longitudinal data. The clustering process is an unsupervised learning method, 
which classifies longitudinal data based on different criteria by performing algorithms. The current study was 
performed with the aim of reviewing various methods of longitudinal data clustering, including two general 
categories of non-parametric methods and model-based methods.
Methods: In this research, to obtain related scientific articles, PubMed, Science Direct Scopus, ISI, and 
Google Scholar were searched between 2000 and 2021.
Results: According to our systematic review, the non-parametric k-means Clustering Method utilizing 
Euclidean distance emerges as a leading approach for clustering longitudinal data.
Conclusion: This research, with an overview of the studies done in the field of clustering, can help researchers 
as a toolbox to choose various methods of longitudinal data clustering in idea generation and choosing the 
appropriate method in the classification and analysis of longitudinal data.
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Introduction

In few recent decades, longitudinal studies 
had different applications in many fields 
like medicine and Para medicine. The main 
characteristic of longitudinal data (LD) is that 
observations are measured frequently over 
time, resulting in a sequence of individuals that 
are usually related to each other. Longitudinal 

studies assist researchers in assessing how 
desired variables change over time. As data 
collection and storage capabilities continue 
to improve, longitudinal studies are being 
designed to incorporate numerous repeated 
measurements of a single variable for each 
subject over an extended period of time. 
Insights from behavior over time separate 
LD from other types of data. However, LD 
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requires unique modeling approaches due to 
the correlation between measurements in each 
individual over time.
Clustering serves as a method within the 
realm of data mining to analyze data, and is 
performed with two main purposes:1 the data in 
each cluster should be as similar as possible, in 
other words, the similarity within the clusters 
should be high,2 the data in each cluster should 
be different from other clusters, so that the 
similarity between the clusters is low.1
lately, there has been notable advancement 
in the development of statistical techniques 
for analyzing LD in the clustering domain,2-6 
Specifically, several criteria are presented to 
determine the clusters optimal number,7-9 and 
in addition for the missing values problem 
with standard assignment methods.10 Many 
applications are proposed in this regard, 
including social and behavioral sciences to 
biomedicine,7, 11-14 as well as new methods.15-17

Today, Some of these approaches can be 
classified into two main types: model-based 
(MB) and non-parametric (NP) methods.18

NP clustering algorithms, also known as 
traditional approaches, differ from other 
methods in that they make no assumptions 
about how the data were generated. Instead, 
they solely concentrate on determining the 
similarity between clusters and individuals. 
Their primary emphasis is on the heterogeneity 
criterion, the clusters  number ,and  the 
clustering algorithm type.18

In MB methods, the raw data is modeled as 
a combination of probability distributions 
through a standard statistical approach. The MB 
method is called as mixed model clustering. 
MB clustering has an extensive background, 
and in 1955, Tiedman introduced the notion 
of clusters as a fundamental component in the 

mixture model (MM) framework.19 in the study 
published by Wolff  In 1965, the evolution of 
MB clustering was investigated using Gaussian 
mixture model (GMiM).20

In recent years, researchers have developed 
various model-based clustering approaches for 
count data. For instance, Subedi and Browne 
(2020) proposed a novel approach that utilizes 
multivariate Poisson-log normal component 
distributions.21 Roick et al. (2021) introduced 
a clustering method based on integer-valued 
autoregressive (INAR) models, which can 
effectively handle count data.22 Ng and Murphy 
(2021) developed a model-based clustering 
approach for count process data, leveraging the 
Gaussian Cox process.23 Additionally, Murphy 
et al. (2021) presented a distance-based mixture 
model for clustering life-course trajectory 
data.24 
In the context of discrete data, including 
count-valued data, Karlis (2019) provided an 
overview of the key concepts and methods.25 
Furthermore, Salter-Townshend et al. (2012), 
and Bouveyron et al. (2019) reviewed various 
model-based clustering approaches for 
network data, highlighting their strengths and 
limitations.26, 27 These studies demonstrate 
the importance of model-based clustering in 
understanding complex data structures.
In MB clustering algorithms, the values of the 
model's parameters are typically determined 
through Maximum Likelihood Estimation 
(MLE) and the Expectation Maximization 
(EM) algorithm.
In this article, we review and discuss various 
LD clustering methods. The methods were 
carefully chosen based on their common use 
and were specifically selected to offer a range 
of advantages and disadvantages. Our primary 
focus was on methods that can effectively 
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identify single-variable longitudinal patterns of 
change. 
This research, with an overview of studies in the 
field of longitudinal data clustering methods, 
can help researchers as a toolbox in generating 
ideas and choosing the appropriate method in 
the classification and analysis of longitudinal 
data.

Methods

Paper Search Methods with Systematic 
Review

In this research, to obtain related scientific 
articles, PubMed, Science Direct Scopus, ISI, 
and Google Scholar were searched between 
2000 and 2021 using the keywords longitudinal 
data, clustering, Unsupervised learning, non-
parametric clustering, model-based clustering, 
single-variable, and their combinations.

Inclusion Criteria

The articles selected for review in this study 
included articles that specifically addressed LD 
clustering, research conducted between 2000 
and 2021, the availability of the full text of the 
article, and the article having an appropriate 
structure.
After the investigations, the articles published 
at conferences and congresses and the articles 
that were published only on the websites, as 
well as the articles that were not of good quality 
in terms of content, were removed.

Exclusion Criteria

full texts of the included articles were studied 
and evaluated separately by two authors (RS 

and HFA) and in case of disagreement between 
their evaluation results, the third author (FM) 
announced the final opinion.
Among the reviewed studies, we excluded 
those studies that included at least one of the 
following criteria: 1) the type of clustering 
method was not mentioned, 2) the parameters of 
the proposed model were not clearly defined, 3) 
And also articles that were not of good quality 
in terms of content.

Study Selection

We identified 152 articles through a 
comprehensive database search. After removing 
duplicate articles, 61 articles remained. 
Then, irrelevant articles were removed after 
reviewing the titles, abstracts and full texts. 
After considering the exclusion criteria, 15 
articles were included in the current systematic 
review. The study selection process is shown in 
Figure 1.

Figure 1. Study selection flowchart
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Result

In this research, longitudinal clustering methods 
are grouped into two approaches: NP and MB 
methods 

Non-parametric Clustering Methods 
(NPCM)
k-means Clustering Method for LD (KmL)

k-means Clustering Method for LD(KmL) is an 
approach for cluster analysis with the purpose 
to division n observations in k clusters (k ≤ n) 
whither every observation is allocated to the 
cluster whose centroid is closest.28

KmL is a hill-climbing algorithm that is 
introduced as a special case of the EM 
algorithm for iterative convergence.29, 30 To 
utilize this technique, you generally need to 
specify the clusters number (k) as an input prior 
to initialization. To achieve the best division, 
the algorithm alternates among two stages: 
maximization (M) and waiting (E). These two 
steps are repeated until stabilization is achieved 
in cluster assignment. To formulate the KmL 
algorithm, it is assumed that there is a data 
set with n observations  X = {x1. .... xn}.31, 32 
Clustered in k groups { }. 1. .kC c K k= = 

. In 
LD, every observation (Xi) shows a trajectory 
which is created by values of ith observer in 
different times {l = 1. ... .t} and is shown by 

{ }1 2. . .i i i itX x x x=  . xit is the measured value of 
ith subject in the time t.
Essentially, the objective of KmL is to minimize 
the sum distance between every observation 
and central point of its corresponding cluster. 
Suppose that Zk, which is the mean of the 
observations belonging to the corresponding 
cluster, represents the center of the cluster Ck. 
The square of the distance between Zk and 

all observations Xi in the cluster Ck can be 
determined as the follows:

                                                                     (1)( ) 2  
i k

K i k
x C

SD C x z
∈

= −∑

The KmL algorithm aim is to minimize the sum 
of squared distances among every observation 
and corresponding center in all k clusters.33

                                                                     (2)2

1 i k

K

i k
k x C

x z
= ∈

−∑∑

k-means Clustering Method for LD Using 
Euclidean Distance

The commonly preferred metric for continuous 
variables is Euclidean distance (ED). Applying 
KmL with this type of distance can also 
be introduced as the traditional or usual 
approach.31, 32

The ED among the two paths x1 and x2 is 
obtained by the following equation:

                                                                    (3)( ) ( )2
1 2 1 2 1 2

1

.  
t

l l
l

d x x x x x x
=

= − = −∑

k-means Clustering Method for LD using 
the Manhattan Distance(MaD)

The Manhattan distance(MaD) is known as the 
"city block distance" or L1 distance. MaD is 
the absolute difference between points.37

The formula for calculating the MaD between 
two paths x1 and x2 is as follows:

                                                                    (4)( )1 2 1 2
1

.
t

l l
l

d x x x x
=

= −∑
k-means Clustering Method for LD Using 
Chebychev Distance(CD)

The Chebychev distance (CD) between two 
vectors is their largest difference in any 
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coordinate dimension. It is named after Pafnuty 
Chebychev. CD is known as the maximum 
absolute value difference.38

The formula for calculating the CD between 
two paths x1 and x2 is as follows:

( )1 2 1 2. l l ld x x max x x= −                    (5)

k-means Clustering Method for LD using 
Mahalanobis Distance(MD)

This approach assumes that we have a 
multivariate longitudinal response that 
takes values in p-dimensional space (Rp). 
With more precision, xil denotes a vector of 
length p containing p values of the response 
variables of continuous type, every observed 
at time l=1. ... .t.
MD between the two paths x1 and x2 of the 
member R(p×t) is obtained by the following 
equation:39

dM (X1.X2 )=(X1-X2 )
T Σ-1(X1-X2)                   (6)

Where ΣϵR(p×t)×(p×t), and a diagonal block matrix 
is defined as follows:

                                                                     (7)
Assuming that the variance-covariance matrix 
among various time samples for variable k is as 
Σk  (k=1.2.….p).

k-means Clustering Method for LD using 
Minkowski Distance(MinD)

Minkowski distance (MinD) is defined as 

a metric generalization of Manhattan and 
Euclidean distance. The formula for calculating 
the MinD among two trajectories x1 and x2 is 
defined as follows40:

( )
1

1 2 1 2
1

.
pt

p
l l

l

d x x x x
=

 
= − 
 
∑        (8)

In the above relationship, when p=2, the 
distance becomes ED, when p=1, the distance 
becomes MaD, and when p=∞, the distance 
becomes CD.

k-means Clustering Method for LD using 
Fréchet Distance (according to shapes of the 
trajectories)

Fréchet distance (FD) was introduced by 
Morris in 1906.34 This similarity measure is 
used for geometric shapes and unlike traditional 
Euclidean distance, this method treats each 
trajectory as a curved path and determines the 
clusters based on the shape of the paths instead 
of their classical distance. For the first time, the 
algorithm of this distance type was presented 
by Alt and Godau in 1995.35

Formally, according to two definitions: (1) a 
reparameterization α of [0,1], a continuous 
function without decrease spanning α:[0,1] → 
[0,1] with the condition α(0) = 0 and α(1) = 1. 
(2) Consider a metric space S where a curve 
f  in S is a continuous mapping from the unit 
interval [0,1] to S.
Consider two given curves f and g located in S. 
FD between two curves f and g in mathematical 
writing is defined as follows10, 35, 36:

δF(f.g) = infmax {f (á (t)) - g(á (t))}             (9)
α.β tϵ[0.1]
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where ||.|| is the corresponding norm and is 
usually the Euclidean norm, and α and β are 
re-parameterized [0,1].

Hierarchical Clustering Method (HCM)

The Hierarchical clustering method (HCM) is 
used to perform cluster analysis which, does 
not involve determining clusters number in the 
initial step. This algorithm usually clusters data 
based on distances. 
Certain Hierarchical clustering (HC) algorithms 
utilization alternative clustering techniques, 
such as graph or density, as a auxiliary tool 
to build hierarchies.36 In this method, two ED 
and dynamic time warping (DTW) are usually 
used.37

 In the agglomerative HCM first, each 
observation is considered as a separate cluster, 
then at each step, the clusters that are more 
similar to each other are merged and create a 
larger cluster until finally all the observations 
are placed in one cluster. The reverse of this 
process occurs in a divisive HCM, so that first 
all observations are considered as a cluster, 
and in the next step, this cluster is divided into 
smaller clusters, and this process continues 
until only one observation is placed in each 
cluster.38

Model-based Clustering Methods (MB)

In this method, a statistical distribution is 
considered for the data. In These models, 
known as limited MMs, the data is assumed to 
be generated by a combination of probability 
distributions That each component display a 
distinct cluster. Therefore, when the data fits 
the model, it should be expected to perform 
well.

A finite mixed model is defined as follows:39, 40

                                                                   (10)( )
1

| ( | )     
K

k k k
k

f x f xϑ π θ
=

=∑

Where x1,…,xn are the observations of the  
independent random sample, and X1,…,Xn  is 
defined by parametric vector Ɵ=(Ɵ1,…,Ɵn).
f(xi;ɵ) is called the mixed density function 
of k components. The component refers 
to the subgroups that make up the society, 
whose number is indicated by k, and Ɵk is 
the parameter related to the kth component, 
and αk is the kth weighting coefficient or the 
mixed coefficient ,and ᴨk is the probability of 
an observation belonging to the kth component 
with the conditions 0≤ᴨk ≤1 and ∑πk=1.

Gaussian Mixture with Cholesky 
Decomposition

The density function of the GMM is in the form 
of the following model:39

                     (11)
Where, πk represents the probability of 
membership in the Kth group. Ø (x|µk,∑k)  is 
the density function of a multivariate Gaussian 
(MG) distribution including the mean of µk 
and matrix of ∑k. 
In this method, the Gaussian mixed model with 
the Cholesky decomposed covariance structure 
is used for every mixed component. According 
to the modified Cholesky decomposition, the 
covariance matrix can be decomposed into 
expressions T∑T´=D, whither D presents 
a unique diagonal matrix involve positive 
diagonal entries, and T presents a unique lower 
triangular matrix with diagonal elements 1. other 
method to formulate the modified Cholesky 
analysis is in the form of ∑-1=T´D-1T, where 
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T and D values are presented as innovation 
variances values and generalized autoregressive 
coefficients, respectively. Therefore, according 
to the Cholesky decomposed covariance matrix, 
the density function of an observation xi in 
group k is given by the following function.41

( )
( )

( ) ( )' ' 1

1| . .
2

1      
2

i k k k p
k

i k k k k i k

f x T D
D

exp x T D T x

µ
π

µ µ−

=

 − − − 
 

(12)

where TK is the lower triangular matrix with p*p 
dimension and DK is the p*p diagonal matrix 
that follows the modified Cholesky covariance 
matrix decomposition.

Gaussian Mixed-effects Model by Smoothing 
Spline Estimation

In this approach, a Gaussian mixed-effects 
model (GMEM) with NP spline smoothing 
is used. Suppose that X={x1. ... .xn } is a set 
of n observations, for every observation, 
Xi={xi1.xi2. ... .xit} is a single trajectory that is 
measured at different time points {l=1.2.….t}. 
N observations a  re classified in k groups based 
on their trajectory trends. In this method, the 
individual trajectory Xi is modeled as a linear 
combination of a fixed effect at time t , ξ k(l) 
related to cluster k, a random effect βi, and an 
error term ϵit:

( )    il k i ilx lξ β= + +ò                              (13)
where ϵit~N (0,Ɵ) and βi~N(0,ƟK). The fixed 
effect ξk corresponds to the trend of overall or 
baseline trajectories associated with cluster k. 
Any systematic change from the general trend 
is represented by the random effect βi and ϵil 
represents the measurement error. Therefore, 
Xi follows a multivariate normal distribution 

N(ξk,∑k) with variance ∑k, which is defined as 
the following relationship:42

                      

       
  

                       

k

k
k k t t

k

I J

θ θ θ θ
θ θ θ θ

θ θ

θ θ θ θ

+ … 
 + … ∑ = + =
 … … … …
 

… + 

                                                                   (14)
where It is a unit mat  rix with dimension t and 
Jt is a square matrix of one with dimension t. 
This issue of clustering i  s projected in a mixed 
model where every cluster can be explained by a 
Gaussian distribution with N(ξk,∑k) parameters:   

                              (15)

where ᴨk represents the mixed coefficients in 
the mixed model.
In this model, a NP method using a smoothing 
spline is used instead of a parametric approach 
to select the base value of ξk. The model tries 
to minimize the relation (9) by fitting a cubic 
spline ξk to a collection of observations and 
finding the appropriate ξk:

( )( ) ( )( )22 ''

1

 
t

il k k k
l

x l t dtξ λ ξ
=

− + ∫∑                      (16)

Where ∑ (xit-ξk(t))
2 is the quantification 

of values deviation from curve ξk, and λkꭍξ 
penalized the curve's un-smoothness. 
If variable xit has a normal distribution, the 
first polynomial is fitted with the negative 
probability of entrance into the system ,and 
the curve is transformed into the following 
penalized probability:42

( ) ( )( )2''  i k kL x t dtλ ξ− + ∫                                 (17)

Were L(xi) is the data log probability.
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Bayesian Hierarchical Clustering

Bayesian Hierarchical Clustering (BHC) 
Similar to the traditional cumulative HCM 
allocates each observation to a specific cluster 
and repeatedly merges pairs of clusters, But 
with the difference that it uses statistical 
hypothesis testing to determine which clusters 
should be merged.43 Suppose X={X1. ... .Xn} 
represents the data set and Di ⸦ x represents 
the set of observations in the leaves under the 
tree Ti. The initialization process begins with 
the creation of n distinct trees {Ti : i=1,…,n}, 
each including one observation. In each step 
of the algorithm, there is a thorough evaluation 
to explore  all potential mergers of two trees.44 

To consider each integration, two hypotheses 
are proposed, the first hypothesis (H1k) is that 
all the data in Dk are identically and directly 
generated from the same probable model p(x|Ɵ) 
with unknown parameters Ɵ. It is also assumed 
that this probable model is a MG model 
with parameters Ɵ=(µ,∑). The alternative 
hypothesis (H2k) indicates that the Dk data has 
two or more clusters.
 To appraise the probability of the data under 
the hypothesis (H1

k), we need to specify the 
prior value under the model parameter p(Ɵ|β) 
with super parameters β. The probability of 
data Dk under (H1

k) is equal to:45

p(Dk|H1
k)=∫p(Dk│θ)p(θ│β)dθ=∫[∏xiϵDkp(xi│θ)]

p(θ│β)dθ                                                   (18)

This relation calculates the probability that all 
Dk data are generated from parameter values, 
assuming a model of the from p(x|θ).
Under the alternative hypothesis (H2

k), the 
probability of observing the given data (Dk) is 
calculated as the product of the probabilities 

of each individual data point (Di) in the 
subtrees (Ti) and (Tj). This can be expressed 
mathematically as p(Dk|H2

k) =p(Di|Ti) p(Dj|Tj).
By compounding the probability of the data 
under the hypotheses H1

k and H2
k, weighted 

by the prior probability that all the points in 
Dk belong to the same cluster ᴨk=p(H1

k), the 
marginal probability of the data in the Tk tree is 
obtained as the following relationship:45

p(Dk│Tk)=πkp(Dk│H1
k)+(1-πk)p(Di│Ti)p(Dj│Tj)

                                                                   (19)
Then the posterior probability of the integrated 
hypothesis rk=p(H1

k|pk) is calculated using the 
Bayes rule as the following relationship:45

( )
( )

( )
( ) ( ) ( ) ( )

1 1

1

| |
     

| | 1 | |

k k
k k k k

k k
k k k k k i i j j

p D H p D H
r

p D T p D H p D T p D T

π π

π π
= =

+ −

                                                                  (20)

If rk > 0.5, it indicates a higher probability that 
the data points in the trees are originating from 
a single underlying function, as a result, they 
converge and the tree can be felled at the points 
where rk < 0.5 and the branches form separate 
clusters.

Latent Profile Analysis

Latent Profile Analysis (LPA) is a statistical 
approach that aims to determine unobserved 
subgroups within a population (i.e., profiles).46 
This method is usually also known as Latent 
Class Analysis (LCA).47,48 In some cases, 
An LPA application is specifically known as 
longitudinal LPA (LLPA). The observation 
expected value at time t hinges on cluster 
membership According to the cluster g 
membership, we have:
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( )
. . . .

. . .

        .    

~ 0.
i j g j g i j g

g i j g j

x i I

N

µ ε

ε σ

= + ∈

                                                                 (21)
where μg,j and σg,j  respectively represent the 
specific mean of the cluster and the specific 
standard deviation of the cluster at time tj. The 
observations probability density function of the 
ith subject is calculated by marginalization on 
all clusters of G:

( ) . . .
1 1

( | . )
G n

i g i j g j g j
g j

f x xπ µ σ
= =

= ∅∑ ∏
                                                                 (22)
where φ(.) represents the probability density 
function with distribution of normal and πg 
represents the cluster ratio with the condition 

1

1
G

g
g

π
=

=∑  and ᴨg>0.  To reduce the parameters 
number, usually the variance between 
measurements over time is assumed to be equal 
(σg.j=σg).

44

This model is generally estimated through 
MLE using the EM algorithm.49 Here, the 
data according to the unknown observation 
model θ=(π1. ... .πG-1.μ1. ... .μG.σ1. ... .σG) and the 
unknown cluster membership matrix z, where 
zi,g is the probability of observation i belonging 
to cluster g conditional on θ.

Two-step approach using Growth Curve 
modeling and K-means (GCKM)

  A two-stage clustering approach is demonstrated 
by modeling pathways using clustering subject 
parameter estimates and a growth curve model 
(GCM) (i.e., random effects) using the K-means 
method. The GCM is estimated in a MM 
framework. The GCKM model is designed to 
analyze LD sets by representing them using a 

single group trajectory (the fixed effects), and 
for each subject, their unique deviation from 
this trajectory (the random effects). The paths 
that an object follows, known as trajectories, 
are commonly represented by either a first-
order or a second-order polynomial.28,31,32

The trajectory described in terms of polynomials 
of order k and random effects in all terms is 
determined by the following equation:

. . . .
0

     
K

k
i j k i i j i j

k

x tβ ε
=

= +∑
                                                                  (23)

. .     k i k k iβ α ζ= +
                             (24)

Here, αk denotes the coefficient of the kth 
order of the polynomial path, the notation εi,j 
represents the measurement error (intra-subject 
variability) and the notation fk,i represents the 
subject random effect i of for the kth coefficient 
(i.e. inter-subject variability). The random 
effects are assumed to have a multivariate 
distribution with zero mean and an unstructured 
variance-covariance matrix. These effects are 
independent of the measurement error(ε). It 
is also assumed that the measurement error is 
normally distributed and independently with 
zero mean and common variance.
The random effects εk,i of each path are usually 
predicted using the best linear unbiased 
predictors (BLUPs) and they are input vectors 

( )0 1 .  . .ˆ ˆ ˆ
i i i KiX ζ ζ ζ= …  transferred to the KmL 

algorithm.

Group-Based Trajectory Model (GBTM)

Group-Based Trajectory Model (GBTM) 
is usually introduced as latent-class growth 
analysis (LCGA, LCGM), sometimes 
as NP multilevel MMing (NPMM), and 
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semi-parametric group-based modeling 
(SGBM).32,50,51

The GBTM model describes a LD set based on a 
combination of group trajectories, regardless of 
within-group variability. Similar to the methods 
concept such as KmL or LPA, the GBTM model 
describes population heterogeneity through a 
set of homogeneous clusters in which subjects 
are represented only by the trajectory of their 
respective cluster.
The GBTM model describes trajectories using 
a linear model. For a given trajectory Xi, its 
observations are described by the trajectory 
group g as follows:

                                                                    (25)( ) ( )
. . .

0

 
K

g g k
i j k i j i j

k

x tα ε
=

= +∑
where εij represents the remainder at time tij 
and αk

(g) represents the kth coefficient for the 
polynomial of group g. In this context, the 
subject trajectories Ψi(tij) are all the same as ∑αk

(g)

tij
k when the subject i belongs to group g. It is 

assumed that the residuals εi,j are independently 
distributed with a normal distribution with zero 
mean and variance σy

2. The marginal average of 
GBTM is calculated according to the following 
equation:52
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Growth Mixture (GMM)
    
Growth Mixture (GMM) is a generalization 
of the GBTM model by including parametric 
random effects and enables a better fit with the 
data assuming intra-cluster variability.53, 54

The GMM method is a generalization of the 
GBTM method by considering the coefficients  
αk

(g) in equation (26) for a particular subject, 
which basically introduces a mixed- effects 

model in each group g. Therefore, a certain 
trajectory Xi is introduced by the group g in the 
form of the following relation:

                                                                   (27)( ) ( ) ( )
. . . .

0

K
g g gk

i j k i i j i j
k

x tβ ε
=

= +∑

( ) ( ) ( )
. .  g g g

k i k k iβ α ζ= +                                   (28)
Group-dependent fixed effects are defined by 
αk

(g).
In this model, it is assumed that the residuals 
follow an independent normal distribution 
with zero mean and uncorrelated with ζkj

(g).we 
assume that the random effects have a normal 
distribution with zero mean but it may be 
correlated in group g of course, independent of 
random effects between groups. The marginal 
mean of the GMM model is defined as the 
following relationship:

                                                                  (29)( ) ( ) ( ) ( )( ). . .       
1 0

G K
g g g k

i j k k i i j
g k

x tπ α ζ
= =

= +∑ ∑

Where ( ) ( ) ( )( ).0 1. 1. 0 g g g
k jEπ π ε< ≤ ∑ = =

Discussion

To raise awareness among authors about 
the application of clustering methods in 
longitudinal data, this study was conducted in 
the form of a systematic review. Specifically, 
the research focused on developing clustering 
methods for analyzing univariate longitudinal 
data. The primary goal of this investigation was 
to introduce and evaluate two non-parametric 
and model-based approaches for clustering 
longitudinal data. Based on the results of 
this study, we highlighted the strengths and 
limitations of each clustering method, presented 
insights into their potential applications and 
areas for further improvement.
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model-based methods assume that a mixture of 
underlying probability distributions generates 
the data and that it can be described using 
a standard statistical model.55-57 In model-
based clustering algorithms, the parameters 
of each distribution are usually estimated by 
maximizing the likelihood. Thus, a particular 
clustering method can be expected to work well 
when the data fits the model.
Unlike model-based approaches, non-
parametric clustering methods have no 
assumptions on how the data was generated and 
explicitly focus on defining similarity between 
subjects and clusters. They mainly focus on the 
dissimilarity measure, the clustering algorithm 
and the number of clusters. Non-parametric 
clustering methods may be referred to as the 
traditional approaches. The K-means algorithm 
is by far the most used non-parametric method 
and has already been extended and adapted to 
longitudinal data.10, 29, 58

Da Costa et al. concluded that the non-parametric 
KmL method with Euclidean distance and the 
hierarchical method with Euclidean distance 
were the best clustering methods, respectively, 
and KmL methods with MaD and MB methods 
such as the GMM with Kulsky variance-
covariance matrix decomposition were also 
Good results were obtained.59 
In Den Teuling et al.'s study, considering 
all the conditions of number of repeated 
observations, sample size, number of groups in 
the simulations, and within-group variability, 
the GMM and GCKM methods significantly 
outperformed the non-parametric GBTM 
methods From the point of view of estimation 
of group routes and group assignment, they 
perform better in all scenarios.16

According to the Study findings of Den Teuling 
et al., the difference in the performance of 

GCKM and KmL shows the advantage of 
reducing the dimensions In the initial stage 
and describes the Features of the path more 
briefly.16 The results of this study are contrary 
The findings of  Twisk et al. showed that 
GCKM and KmL provided similar results, in 
other words, GCKM and KmL methods have 
almost similar solutions in all scenarios.47

The study conducted by Feldman and his 
team revealed that Longitudinal Latent Class 
Analysis (LLCA), which can be regarded as 
a straightforward clustering method similar 
to KmL, yields outcomes comparable to 
GBTM.48 Dentoling et al.'s findings showed 
that KmL has a better performance than GBTM 
due to significant flexibility in describing 
paths, better scaling, and less calculation time. 
However, GBTM method is preferred in data 
analysis containing missing or misaligned 
observations.16

The GMM model performs well in studies 
with a small number of observations, while in 
the GCKM model, increasing the number of 
observations allows a more accurate estimation 
of the random effects of the model. Because 
of equivalent outcomes of GMM for better 
execution time scaling with model complexity, 
and a larger number of observations, GCKM 
is the preferred choice for ILD due to its 
computational rapidity. However, under greater 
within-group variability, only GMM and 
GCKM were able to do this satisfactorily.16

The result of the simulation in the study of 
Den Tuling et al. showed that GCKM and 
GMM perform better than GBTM and KmL 
methods in the dataset including heterogeneous 
subgroups.16 The GBTM method is more 
sensitive to outlying observations than the 
GMM method and has a faster algorithm 
execution, and also tends to overestimate the 
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clusters number.60

Over the past two decades, significant 
advances have been made in the development 
of longitudinal data clustering methods. While 
this has led to a wide range of techniques being 
explored, it is not possible to cover every topic 
in this article. 
Instead, we have focused on introducing the 
fundamental and most influential methods, 
considering their strengths and limitations 
and with a particular emphasis on univariate 
longitudinal data analysis.

Conclusion

MB clustering techniques tend to require a 
relatively small sample size in terms of both 
the trajectories number and the observations 
number in each trajectory. In MB methods, 
unlike NP methods, the representation of the 
cluster path is parametric. NP methods are 
theoretically less complicated and have fewer 
software limitations. Although the NP methods 
have a high speed in calculation and access to 
the implementation of the algorithm widely, but 
they are highly sensitive to the measurement 
noise.
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