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Introduction: Survival analysis including cure fraction subgroups is heavily used in different fields like 
economics, engineering and medicine. The main core of the analysis is to understand the relationship between 
the covariates and the survival function taking into consideration censoring and long-term survival. The 
analysis can be performed using traditional statistical models or neural networks. Recently, neural network 
has attracted attention in analyzing lifetime data due to its ability of efficiently estimating the survival function 
under the existence of complex covariates. The goal of this study is to develop a parametric neural network 
that can sufficiently predict survival data with cure fraction.  To the best of our knowledge, this is the first time 
a parametric neural network is introduced to analyze mixture cure fraction models.
Methods: In this paper, we introduce a novel neural network based on mixture cure fraction Weibull loss 
function. 
Results: Alzheimer disease dataset as long as synthetic dataset are used to study the efficiency of the model. 
We compared the results using goodness of fit methods in both datasets with Weibull regression. 
Conclusion: The proposed neural network has the flexibility of analyzing continuous data without 
discretization. Also, it has the advantage of using Weibull distribution properties. For example, it can analyze 
data with different hazard rates (monotonically decreasing, monotonically increasing and constant). Comparing 
the results with Weibull regression, the proposed neural network performed better.
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Introduction  

Standard survival models implicitly assume the 
occurrence of the event of interest for all subjects 
in the study. Sometimes this is not the case, as 
part of the subjects may never experience the 
event of interest no matter how long the follow 
up time. For example, in medical field, some 

patients are cured and never face the recurrence 
of a certain disease like cancer. In economics, 
unemployed person may never have a job. In 
finance, some banks may never face bankrupt. 
In demography, one may never get married. 
(For more examples see Amico1). 
To analyze this type of lifetime data, cure 
fraction models are introduced. There are two 
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main types, mixture and non-mixture cure 
fraction models, the former is considered in our 
study. Boag2 first proposed mixture cure fraction 
model to analyze breast cancer data. This cure 
model has since been applied by many using 
different distributions. For example, Farewell3 
applied Weibull distribution to analyze long term 
survivors for patients with three levels of zinc 
concentration. Yamaguchi4 used the accelerated 
failure with generalized Gamma distribution to 
analyze the permanent employment in Japan. 
Yu et al5 make a comparison using different 
distributions and found that generalized 
Gamma distribution is quite robust and applied 
the models to analyze cancer data. Kannan et 
al6 applied the generalized exponential cure rate 
model to study relapse time for drug addicts. 
Martinez et al7 analyzed gastric cancer data 
using cure fraction models with generalized 
modified Weibull distribution. Swain et al8 
and Omer et al9 used mixture cure model 
with generalized Gompertz and exponentiated 
Weibull exponential distributions, respectively, 
to analyze melanoma patients.
Studying lifetime data can be done using 
statistical models or neural networks. Recently, 
the latest has attracted attention due to its 
flexibility in handling complex covariates. 
Faraggi-Simon network (Faraggi and Simon10) 
was first introduced as a nonlinear extension 
of Cox proportional hazard model. However, 
the network failed to outperform the traditional 
Cox model. Katzman et al11 modified Faraggi-
Simon network by applying new deep learning 
techniques which outperforms the traditional 
Cox model. Different networks were developed 
keeping the basic assumption of proportional 
hazards, see for example Zhu et al12 and Zhu 
et al13. Pawley14 introduced a parametric neural 
network (DeepWeibull) based on Weibull 

distribution that allows to analyze continuous 
data. Recently, Xie and Yu15 introduced neural 
network to analyze mixture cure fraction models 
but preserving the assumption of proportional 
hazard. 
The goal of this study is to present a parametric 
neural network that efficiently predicts long-
term survivals without proportional hazard 
assumption or data discretization. Here, a 
Weibull mixture cure fraction neural network is 
presented. Weibull distribution is selected due 
to its flexibility in taking different shapes as well 
as its several applications in different fields, for 
example in engineering, Ng et al16 estimated 
the volume of water pumping by a windmill. 
Velazquez et al17 studied the reliability of 
electronic railway signaling system. In medical 
field, Yu et al5 studied the survival function for 
data with testicular cancer, colon and rectum 
cancer, lung cancer and female breast cancer. 
Pascale et al18 analyzed the survival of ischemic 
strokes. Lambert et al19 studied the lifetime of 
cancer of the ovary and cancer of the colon 
patients. Achcar et al20 estimated the model 
parameters for acute myelocytic leukemia and 
acute lymphoblastic leukemia patients. Chukwu 
and Folorunso21 analyzed gastric cancer data. 
Yusuf and Bakar22 analyzed acute myelogenous 
leukemia data. Pawley14 used it to analyze the 
lifetime of breast cancer data and the survival 
time of seriously ill hospitalized adults.

Materials and Methods 

We introduced a novel neural network based on 
Weibull loss function. It takes into consideration 
the long-term survival and efficiently analyze 
continuous data without discretization. 
We will first explain the likelihood function 
under survival analysis, illustrate the basic 
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properties of Weibull distribution and cure 
fraction models. Then illustrate the derivation 
of the model. 

Survival analysis and Weibull distribution 

The main concern in survival analysis is 
to study the relationship between different 
covariates (x) and lifetime data (ti) taking into 
consideration the censored observations. For n 
data points under right random censoring, the 
likelihood function can be expressed as follows
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Where,
 f(t): the probability density function.   
S(t)= P(T> t): the survival function.
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The probability density and survival functions 
can take several distributions. Here, we 
assume that T follows Weibull distribution. 
The probability density function, survival 
function and hazard function can be expressed 
respectively as follows
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Different shapes of f(t) and h(t) are presented 
in Figures 1 and 2, respectively. From Figure 
1, It can be seen that Weibull distribution takes 
different shapes according the values of the 

shape parameter β. For example, when β<1 the 
pdf is monotonically decreasing. Also, when 
β =1, the pdf is monotonically decreasing but 
faster than that when β<1. While when  β>1 the 
pdf increases till it reaches its peak and then 
monotonically decreases. The hazard rate takes 
three different shapes. It can be monotonically 
decreasing when β<1, monotonically increasing 
when  β> 1 and constant for  β=1 , as illustrated 
in Figure 2.

Figure 1. The probability density function for weibull 
distribution

Figure 2. The hazard function for weibull distribution

Cure Fraction Models 

Cure fraction models analyze a special case 
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of survival analysis when a portion of the 
population never experience the event of 
interest. Such subjects are referred to as cured, 
immune or non-susceptible. The other part of 
the population is those who are subject to the 
event of interest, they are called non-cured or 
susceptible. To represent the two groups of the 
population, we define η as follows

1,             
.

0,                        
if the subject is susceptible
if the subject is cured

η


= 


Let P(η=0) = p, P(η=1) = 1 - p, F(t) be the 
cumulative distribution function of the entire 
population and F* (t) is the cumulative 
distribution function of susceptible subjects. It 
is assumed that F* (t)  is a proper cumulative 
distribution function, thus 
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Thus, the survival function for the whole 
population S(t) can be written as follows
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where, S* (t) is the survival function of 
susceptible subjects.
The likelihood function in (1) can be rewritten 
under cure fraction model as follows

( ) ( ) ( ) ( ) 1* *
2

1

1    1 .i i
n

i i i i i
i

L p f t p p S t
δ δ−

=

   = − + −   ∏

Substituting by Weibull distribution from 
equation (2), the likelihood function is as 
follows
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To link the covariates to the previous likelihood 
one can define

1  ,T
i iα θ= x

where, θ1 is a vector of regression parameters 
and x is a vector of covariates. 
For cure proportion, a link function must be 
used. The most commonly used is the sigmoid 
function with the following formula 
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Where, θ2 is a vector of regression parameters.
This likelihood function with αi and pi formulas 
will be used in the model described in the next 
section.

Model Description 

The goal of this model is to predict the 
parameters of cure fraction model under 
Weibull distribution using the neural network 
ability to handle complex covariates and 
maintaining the continuity of the data. First, 
a brief explanation of neural networks will be 
presented, then the structure of the presented 
network will be explained. 
The main idea of neural network is to compute 
the output based on a functional relationship 
with the inputs. Neural network takes a 
weighted sum of the inputs with one additional 
term called a bias term illustrated as follows 
Let x1, x2, …, xn be a set of inputs with weights 
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w1, w2,… wn, the neuron output is given by 

i iz b w x= +∑

Where: b is called a bias term 

The output of the network depends on the 
objective of the study. So, the simple linear 
combination is not always the required output. 
Accordingly, instead of using z, a function 
∑= f(z) is considered and called an activation 
function. The choice of the activation function 
depends on the required range of the output. 
For example, if the output is a value between 0 
and 1, sigmoid function could be a choice. 
A neural network learns by adjusting the weights 
in order to minimize the observed errors. The 
prediction error is reflected through a function 
called the loss function. So, the network updates 
the weight by minimizing the loss function. 
Mean square error is a common choice for 
the loss function in most of the applications. 
However, in survival analysis one needs to take 
censoring information into consideration. This 
is done through the likelihood function. So, the 
loss function is the negative of log likelihood 
function.
The presented network is illustrated in Figure 
3, DeepWei-Cu is a deep neural network that 
takes as input the covariates and output the 
estimates of cure proportion and Weibull 
distribution's parameters that fully characterize 
the survival function. The hidden layers of 
the network consist of a fully connected layer 
followed by a dropout layer. It consists of 
three fully connected hidden layers of widths 
1, 2 and 1 of the covariates dimensions with 
relu activation. The output layer has a softplus 
activation function for Weibull distribution 
parameters to consist with the parameters' 

range [0,∞], and sigmoid activation function 
for cure proportion. Python is used to perform 
the analysis. 
For training, back-propagation via the Adam 
optimizer is used. Each of the hidden layers 
have Xavier initialization and a dropout rate 
of 0.25. DeepWei-Cu is implemented in a 
TensorFlow environment with the Keras API.
The loss function is defined to be the negative 
log likelihood of equation 3, which can be 
written as follows 
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In Figure 4, we illustrate a computational graph 
to compute the training loss of the proposed 
network: the inputs are the covariates x and the 
outputs are α ,β and p.
For model evaluation, both time dependent 
concordance index (Ctd) and integrated brier 
score are considered and explained briefly as 
follows
Time dependent concordance index (Ctd):  Is 
an index to evaluate the discrimination ability 
of survival model taking into consideration 
censored observations. The main advantage 
of Ctd  over the usual concordance index is 
that there is no assumption for one-to-one 
correspondence between predicted survival 
probabilities and predicted times (i.e., no 
proportional hazard assumption). For a 
predicted survival probability (Ŝ̂), the index is 
defined as follows

( )( ) ( )( )( | | |   1)ˆ ˆtd
i i i j i j iC P S T X t S T X t T T and δ= < < =

For more information see Antolini et al.23
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Brier score (BS(t)):  Is a measure of the accuracy 
of probabilistic prediction. In survival analysis 
brier score is a measure of how well the model 
predicts the survival function. To account for 
censoring, inverse probability of censoring 
weighted Brier score is considered and defined 
as follows 

( ) ( ) ( )
( )

( ) ( )
( )

22 1 .. , 11 [ ]
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ˆ ˆ
i ii i i

i i
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Where 

n: Is the number of observations in the data. 
Ŝi (t): is the predicted survival probability and 
i=1,…,n.
K̂ (ti): The estimated Kaplan-Meier survival 
function.  
However, brier score only gives a predictive 
performance at a given time point t. To 
overcome this disadvantage. Integrated brier 
score is introduced to average the brier score 
over time interval. It has the following formula.
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Usually, T1 is set to zero and T2 is the maximum 
value of ti. For more details, see Pawley14 and 
Håvard and Ørnulf.24

The model is examined on two synthetic 
datasets and one real dataset. A brief description 
of the datasets is given below

Open Access Series of Imaging Studies 
(OASIS3) 

OASIS3 dataset is an open access series of 
neuroimaging datasets freely available for 
scientific studies (see, www.oasis-brains.org). 
It aims to study alzheimer disease for adults 
ranging in age from 42-95 years. In our study, 

we are interested in lifetime from enrollment 
till first recognition of Alzheimer disease. Since 
not all participants will face alzheimer, we refer 
to this group as "cured". 

Figure 3. The architecture of Deep Wei-CU

Figure 4. Computational graph to compute the training 
loss of Deep Wei-Cu

Clinical Dementia Rating (CDR) is commonly 
used to distinguish subjects with and without 
the disease, a value greater than zero represents 
demented. Hence, we restricted the sample 
to subjects that were non-demented at the 
beginning of the study. After cleaning the 
data of the missing, outliers and CDR > 0, 
our study consists of 196 participants. Table 1 
gives an overview of the dataset. We used in 
the analysis 8 features (gender, mini-mental 
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state examination score, weight, height, 
apolipoprotein E, logarithm of geriatric 
depression scale, intracranial volume and 
subcortical gray matter volume). 
To test for the applicability of cure fraction 
models, one usually examines the Kaplan–
Meier curve. If there is a long plateau at the later 
part of curve, then there may be a subgroup of 
cured subjects. From Figure 5, It can be seen 
that there is a long plateau in the Kaplan-Meier 
curve. Hence, we can use cure fraction model 
to analyze OASIS3 dataset.

Figure 5. Kaplan-Meier Curve for OASIS3 dataset

Synthetic

Table 1 gives an overview of synthetic datasets. 
Four datasets are generated with the following 
characteristics:

Linear Weibull (LW)

Weibull model with linear relationships 
between the covariates and the parameters with 
40,000 sample units.

Non-linear Weibull (NLW)

Weibull model with cubic relationships between 
the covariates and the parameters with 40,000 
sample units. 
The data is generated as follows
1) For each unit (i= 1,...,n):

a) generate two covariates from uniform(-1,1) 
or standard normal 
b) Set

αi= 20+ 10x1i-10x2i , for linear data.

αi=80+40 x1i
3- 30 x2

i2- 5x1i , for non-linear data.
1 2

1 2

3 2

3 21

i i

i i

x x

i x x
ep

e

−

−=
+

c) Generate ti from Weibull with parameters 
αi and  β=1 and 1.1 for linear and nonlinear, 
respectively.

2) Randomly select 60% of the units to be 
censored.
3) For censored data, generate a right censored 
event time from uniform (0,ti).
4) Set δi=0 for censored data, otherwise δi=1.
5) If ti  > 500, set ti= 500. This is done to keep 
the harmony of the data.
Results 

To study the performance of DeepWei-Cu, we 

Table 1. Descriptive statistics of OASIS3 and synthetic datasets.
No. of uncensored No. of censored No. of features

OASIS3 26 (13.3%) 170 (86.7%) 8
synthetic 16000 (40%) 24000 (60%) 2
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compare the results with the usual parametric 
statistical cure fraction model. The results 
illustrate that DeepWei-Cu outperforms 
Weibull regression.
For evaluation, we split the data into three 
randomly train/test datasets, with 80% of the 
units in each training set and the remaining 20% 
in the test set. We reserved 20% of the training 
set as a validation set. All datasets are generated 
with 60% censoring. To test the performance of 
the model, we used time dependent concordance 
index (Ctd) and integrated brier score. 
The concordance index and the integrated 
brier score for synthetic and real datasets are 
illustrated in Tables 2 till 4, respectively. High 
C^td and low integrated brier score indicate 
better model performance in learning the 
patients' survival distribution.
In synthetic datasets we can obtain the oracle Ctd 
and oracle integrated brier score using the true 
survival distribution. This helps in providing 
a benchmark against which to compare the 
model. If the model approaches near the oracle, 
then it has likely learned the true distribution. 

Sometimes due to random chance, a model may 
beat the oracle metric (Pawley 14). From Table 2 
and 3, It can be seen that the concordance index 
and the integrated brier score for DeepWei-Cu 
are very close to the oracle one, which indicate 
the model's ability to learn the true survival 
distribution. Also, it is clear that DeepWei-Cu 
has higher Ctd and lower integrated brier score 
than that of the regression Weibull (RW) in 
both linear and nonlinear cases. 
In real world, we can't guarantee that the data 
is generated from Weibull distribution. To 
compare the model and test its applicability, 
we apply it on OASIS3 real dataset. From table 
4, it can be seen that, DeepWei-Cu has higher 
Ctd and lower integrated brier score than that 
of RW, which indicates that Deep-WEi-Cu has 
a better performance. Also, the concordance 
index has high value (> 0.8) indicating a strong 
model.

Discussion

Survival analysis models have a pre-assumption 

Table 2. Concordance Index (integrated brier score) for linear Weibull (NL) and nonlinear Weibull (NL) synthetic datasets under 
uniform covariates. 

Oracle DeepWei-Cu RW
Datasets LW 0.6405 (0.3632) 0.5819 (0.2610) 0.5738 (0.4186)

NLW 0.5021 (0.3248) 0.5067 (0.2891) 0.5007 (0.3941)

Table 3. Concordance Index (integrated brier score) for linear Weibull (NL) and nonlinear Weibull (NL) synthetic datasets under 
standard normal covariates. 

Oracle DeepWei-Cu RW
Datasets LW 0.5326 (0.3827) 0.5197 (0.1855) 0.5118 (0.2623)

NLW 0.5529 (0.3927) 0.5512 (0.2543) 0.5350 (0.2557)

Table 4. Concordance Index (integrated brier score) for OASIS3 
DeepWei-Cu RW

0.8986 (0.0929) 0.8620 (0.0964)
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of the occurrence of the event of interest for 
all observations. However, in some studies 
like Alzheimer, diabetic and cancer, we face 
the situation where part of the population may 
never face the event of interest. In this case, 
we need to take into consideration the effect 
of long-term survivors to guarantee accurate 
analysis.  
In our study, we introduced a novel cure fraction 
Weibull neural network. It has the advantage of 
analyzing continuous data without the need of 
discretization. Also, we took into consideration 
the effect of long-term survivals in the loss 
function. Besides, benefiting from the flexibility 
and properties of Weibull distribution by not 
restricting to proportional hazard assumption. 
To evaluate the network performance, both 
discriminative ability and accuracy are tested 
using time dependent concordance index 
and integrated brier score, respectively. The 
analysis was performed on both synthetic 
and real datasets. Two synthetic datasets 
were considered using linear and nonlinear 
covariates. Comparing the results of the 
proposed network with Weibull regression, 
the former performed better in both covariates 
cases and model performance matrices.   
A straight forward generalization to this work 
can be done by changing the used distribution. 
Also, in this study we considered mixture cure 
fraction models, one can study non-mixture 
ones. Moreover, we only considered the case 
of structured covariates, a generalization can be 
made to handle both structured and unstructured 
ones. Furthermore, we used backpropagation 
technique in training the network, other 
methods could be used. Finally, it is suggested 
for further studies to take into consideration any 
pre-existing information about the parameters. 
This can be done using Bayesian technique. 

Conclusion

This paper presents a novel model (DeepWei-
Cu) to be used in the mixture cure fraction 
survival analysis. It trains a neural network to 
predict the parameters of Weibull distribution 
and cure proportion with respect to the 
covariates under right random censoring. To 
the best of our knowledge, this is the first time a 
parametric neural network is used in analyzing 
lifetime data with cure subgroup.
DeepWei-Cu has the flexibility of analyzing 
continuous data without discretization. Also, it 
has the advantage of using Weibull distribution 
properties. For example, it can analyze data 
with different hazard rates (monotonically 
decreasing, monotonically increasing 
and constant). As a test, we compared 
the performance of DeepWei-Cu with the 
performance of previous statistical models. 
The numerical results showed that, DeepWei-
Cu performed better.

Conflicts of interest

The authors declare that they have no conflicts 
of interest.

References 

1. Amico, M. and Keilegom, I., V. Cure 
models in survival analysis. Annual Review 
of Statistics and Its Application. 2018; 5: 18.1-
18.32.

2. Boag, J., W. Maximum likelihood 
estimates of patients cured by cancer therapy. 
Journal of the Royal Statistical Society. Series 
B.  1949; 11(1): 15-53.



62

Vol 10  No 1 (2024)

DeepWei-Cu: A Deep Weibull Network for Cure Fraction Models

Abuelamayem O et al. 

3. Farewell, V., T. The use of mixture 
models for the analysis of survival data with 
long-term survivors. Biometrics. 1982; 38: 
1041-1046.

4. Yamaguchi, K. Accelerated failure-time 
regression models with a regression model of 
surviving fraction: an application to the analysis 
of "permanent employment" in Japan. Journal 
of the American Statistical Association. 1992; 
87(418): 284-292.

5. Yu, B., Tiwari, R., C., Cronin, K., A. 
and Feuer, E. J. Cure fraction estimation from 
the mixture cure models for grouped survival 
data. Statistics in Medicine. 2004; 23: 1733-
1747. 

6. Kannan, N., Kundu, D., Nair, P. and 
Tripathi, R., C. The generalized exponential 
cure rate model with covariates. Journal of 
Applied Statistics. 2010; 37(10): 1625-1636.

7. Martinez, E., Z., Achcar, J., A., Jacome, 
A., A. and Santos, J., S. Mixture and non-
mixture cure fraction models based on the 
generalized modified Weibull distribution with 
an application on gastric cancer data. Computer 
Methods and Programs In Biomedicine. 2013, 
112(3); 343-355.

8. Swain, P., K., Grover, G. and Goel, K. 
Mixture and non mixture cure fraction models 
based on generalized gompertz distribution 
under Bayesian approach. Tatra Mountains 
Mathematical Publication. 2016; 66: 11-135.

9. Omer, M., Abu Bakar, M., Adam, M. and 
Mustafa, M. Cure models with exponentiated 
Weibull exponential distribution for the 

analysis of melanoma patients. Mathematics. 
2020; 8(11), 1926; https://doi.org/10.3390/
math8111926.

10. Faraggi, D., and Simon, R. A neural 
network model for survival data. Statistics in 
Medicine. 1995; 14:73-82.

11. Katzman, J., Shaham, U., Cloninger, 
A., Bates, J., Jiang, T. and Kluger,'Y. Deep 
Survival: A Deep Cox Proportional Hazards 
Network. Stat. 2016, 1050 (2), 1–10;  https://
doi.org/10.1186/s12874-018-0482-1.

12. Zhu, X., Yao, J and Huang, J. Deep 
Convolutional Neural Network for Survival 
Analysis with Pathological Images. IEEE 
International Conference on Bioinformatics 
and Biomedicine. 2016: DOI: 10.1109/
BIBM.2016.7822579.

13. Zhu,X., Yao, J., Zhu, F. and Huang, 
H. WSISA: Making Survival Prediction 
from Whole Slide Histopathological Images. 
IEEE Conference on Computer Vision and 
Pattern Recognition. 2017: DOI: 10.1109/
CVPR.2017.725.

14. Pawley, M. DeepWeibull: a deep 
learning approach to parametric survival 
analysis. M.Sc. Thesis, Departement of 
Mathematics, Imperial College London. 2020.

15. Xie, Y. and Yu, Z. Mixture cure 
rate models with neural network estimated 
nonparametric components. Computational 
Statistics. 2021; 36, 2467-2489.

16. Ng, S,. K., Mclachlan, G., J., Yau, K., 
W., Lee, A., H. Modelling the distribution of 



63

Vol 10  No 1 (2024)

DeepWei-Cu: A Deep Weibull Network for Cure Fraction Models

Abuelamayem O et al. 

ischaemic stroke-specific survival time using 
an EM-based mixture approach with random 
effects adjustment. Statistics in Medicine. 
2004; 23: 2729-2744.

17. Velazquez, M., Rodriquez, J., Carmen, 
M., Murrieta, F. and Eslava, G. Application of 
the Weibull Distribution to Estimate the Volume 
of Water Pumping by a Windmill. Journal of 
Power and Energy Engineering. 2016; 4(9): 36-
51.

18. Pascale, E., Freneaux,T., Sista, 
R., Sannino, P., Marmo, P., Bouillaut, L. 
Application of the Weibull distribution for the 
optimization of maintenance policies of an 
electronic railway signaling system. European 
Safety and Reliability Conference. 2017; 8p: 
hal-01521640.

19. Lambert, P., C., Thompson, J., R., 
Weston, C., L. and Dickman, P., W. Estimating 
and modeling the cure fraction in population-
based cancer survival analysis. Biostatistics. 
2007; 8(3): 576-594.

20. Achcar, J., A., Coelho-Barros, E., 
A. and Mazucheli, J. Cure fraction models 
using mixture and non- mixture models. Tatra 
Mountains Mathematical Publications. 2012; 
51: 1-9.

21. Chukwu, A., U. and Folorunso, S., A. 
Determinant of flexible parametric estimation 
of mixture cure fraction model: an application 
of gastric cancer data. West African Journal 
of Industrial and Academic Research. 2015; 
15(1): 139-156.  

22. Yusuf, M., U. and Bakar, M., R. Cure 

models based on Weibull distribution with and 
without covariates using right censored data. 
Indian Journal of Science and Technology. 
2016; 9(28): 1-12.

23. Antolini, L., P. Boracchi, and E. 
Biganzoli. A time-dependent discrimination 
index for survival data. Statistics in Medicine. 
2005; 24(24): 3827- 3944.

24. Håvard Kvamme and Ørnulf Borgan 
(2023). The Brier Score under Administrative 
Censoring: Problems and Solutions. Journal of 
Machine Learning Research.2023;  24(2): 1- 
26. 


