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Introduction: In real-world datasets, outliers are a common occurrence that can have a significant impact on 
the accuracy and reliability of statistical analyses. Detecting these outliers and developing robust models to 
handle their presence is a crucial challenge in data analysis. For instance, natural images may have complex 
distributions of values due to environmental factors like noise and illumination, resulting in objects with 
overlapping regions and non-trivial contours that cannot be accurately described by Gaussian mixture models. 
In many real life applications, observed data always fall in bounded support regions. This leads to the idea 
of bounded support mixture models. Motivated by the aforementioned observations, we introduce a bounded 
multivariate cntaminated normal distribution for fitting data with non-Gaussian distributions, asymmetry, and 
bounded support which makes finite mixture models more robust to fitting, since rare observations are given 
less importance in calculations.
Methods: A family of finite mixtures of bounded multivariate contaminated normal distributions is introduced. 
The model is well-suited for computer vision and pattern recognition problems due to its heavily-tailed and 
bounded nature, providing flexibility in modeling data in the presence of outliers. A feasible expectation-
maximization algorithm is developed to compute the maximum likelihood estimates of the model parameters 
using a selection mechanism.
Results: The proposed methodology is validated by conducting experiments on both simulated data and 
two real natural skin cancer images. We estimate the parameters by the proposed expectation-maximization 
algorithm. The obtained results shown that the proposed model has successfully enhanced accuracy in 
segmenting skin lesions.
Conclusion: The reliable model-based clustering using finite mixtures of bounded multivariate contaminated 
normal distributions is introduced. An expectation-maximization algorithm was created to estimate parameters, 
with closed-form expressions utilized at the E-step. Practical tests on images for skin cancer detection showed 
enhanced accuracy in delineating skin lesions.
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Introduction  

In real-world datasets, outliers are a common 

occurrence that can have a significant 
impact on the accuracy and reliability of 
statistical analyses. Detecting these outliers 
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and developing robust models to handle 
their presence is a crucial challenge in data 
analysis. This is particularly true for model-
based clustering methods, where even a small 
number of outliers can lead to biased estimates, 
incorrect classifications, and overfitting of 
the number of groups. For instance, natural 
images may have complex distributions of 
values due to environmental factors like noise 
and illumination, resulting in objects with 
overlapping regions and non-trivial contours 
that cannot be accurately described by Gaussian 
mixture models.
Tukey1 introduced the concept of a multivariate 
contaminated normal (MCN) distribution, 
which consists of two normal mixture 
components. The first component has a high 
prior probability and represents the reference 
cluster distribution of good observations. 
The second component, with a small prior 
probability, has the same mean as the first 
component but an inflated covariance matrix, 
and represents the bad observations.2 The 
probability density function (pdf) of MCN 
distribution, denoted by 

X ~ MCN (μ,Σ,ν1,ν2) is given by
fMCN (x;μ,Σ,ν1,ν2)=ν1 ϕp (x;μ,ν2

-1Σ)+(1-ν1)ϕp 
(x;μ,Σ),  x p∈ ,
                                                                    (1)

where ϕp (.; μ, Σ) denotes the pdf of the 
p-variate normal random vector with mean μ 
and covariance matrix Σ. Parameter 0<ν1<1, 
can be interpreted as the proportion of outliers 
and 0<ν2<1, is interpreted as a scale factor. 
Despite retaining its elliptical symmetry, the 
MCN distribution can exhibit long kurtosis 
and heavy tails through its shape parameters, 
ν1 and ν2, making it a suitable option for 

numerous modeling scenarios. Furthermore, 
if we set ν2=1, it reduces to the multivariate 
normal (MN) distribution.
It is worth mentioning that the MCN distribution 
can be expressed by a convolution stochastic 
representation of the MN distribution as 

X d =μ+τ-1/2 Σ1/2 Z ~MCN(μ,Σ,ν1,ν2)            (2)

where Z follows a p-variate standard normal 
distribution and τ is a discrete random variable 
taking one of two states with the following pdf:

( ) ( ) ( ) ( )21 2 1 1 1; , 1 ,fτ τ ν ττ ν ν ν ν= == + − 

1 20 1,0 1,ν ν< < < <                                       (3)

where  ( ).  denotes the indicator function.
In many real life applications, observed data 
always fall in bounded support regions. This 
leads to the idea of bounded support mixture 
models. The bounded normal mixture (BNM) 
and bounded t mixture (BTM) models are 
widely used techniques for modeling observed 
data with bounded support regions. These 
models have been extensively used; for 
example, in signal processing,3,4 climate data,5 

and image computer vision.6-9 In all these cases, 
the observed data are usually in limited range 
and are not necessarily symmetric within their 
bounds. However, in many applications, the 
tail of the BNM model is shorter than required. 
Also, the BTM is not flexible enough to fit the 
shape of the data in the presence of the outliers. 
Outliers may also lead to overestimation or 
underestimation of the variability of the data, 
leading to a poor fit of the Gaussian distribution. 
One approach to address this issue involves 
is to consider generalizations of Gaussians 
with heavy tails such as t, power exponential 
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and contaminated normal distributions. The 
contaminated normal distribution has heavier 
tails compared to the normal distribution, 
which means it assigns more probability to 
extreme values. This makes it less sensitive 
to outliers, as extreme values have less impact 
on the overall shape of the distribution.10,11 

Therefore, the MCN distribution provides a 
more robust approach to the fitting of normal 
mixture models, as observations that are 
atypical of a component are given reduced 
weight in the calculation of its parameters. 
Also, the use of MCN components gives less 
extreme estimates of the posterior probabilities 
of component membership of the mixture 
model. Motivated by the aforementioned 
observations, we introduce a bounded MCN 
distribution (BMCN) for fitting data with 
non-Gaussian distributions, asymmetry, and 
bounded support which makes finite mixture 
models more robust to fitting, since rare 
observations are given less importance in 
calculations.
Dempster et al.12 proposed the EM algorithm 
for the estimating maximum likelihood (ML) 
estimate of model parameters in the presence 
of censored and truncated data. Atkinson13 

introduced an EM algorithm for a finite 
mixture of two normal distributions with right-
censored data, while McLachlan and Jones14 
developed an EM algorithm for univariate 
binned and truncated data. More recently, there 
have been many works on modeling bounded 
data. For instance, Nguyen et al.15-16 proposed 
an EM algorithm to estimate the parameters 
of mixtures of bounded generalized normal 
models, while Azam and Bouguila17 introduced 
a mixture of bounded Laplace distribution and 
suggested a maximum likelihood approach 
for parameter estimation, with parameter 

optimization performed by an EM algorithm. 
Similar studies investigating the effectiveness 
of EM algorithm for estimation of model 
parameters in the presence of truncated or 
bounded data can be found in Lee and Scott18 

and Yu et al.19

Inspired by the works of Mahdavi et al.,20,21 we 
study now the theoretical framework of EM-
type algorithm via selection mechanism for 
parameter estimation of the BMCN model. To 
demonstrate the performance of the proposed 
algorithm, we have successfully applied it to 
skin lesion images. The proposed model has 
successfully enhanced accuracy in segmenting 
skin lesions, showcasing the potential of the 
developed method in image analysis and image 
processing. Overall, the proposed algorithm 
offers a reliable and efficient way to model 
many real-world problems, especially in the 
field of image analysis.

Methods

The BMCN distribution

Let Ω = (a, b) p⊆   be a measurable set. 
Then, the random vector y∈Ω is said to 
follow BMCN distribution, with support Ω 
and parameters  μ p∈ , Σ p p×∈ , 0 < v1 < 
1 and 0 < v2 < 1,  if its pdf is

                                                                    (4)

Evidently, the MCN distribution is recovered 
if we set Ω= p .
From (2), it is easy to show that the BMCN 
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distribution admits the following stochastic 
selection representation:

Y d=X ǀ (Xϵ Ω),                                           (5)

where X=μ+τ-1/2 Σ1/2 Z,  Z ~Np (0,Ip) and 
( )1 2; ,fττ τ ν ν∼  defined in (3). The 

expression (5) will be useful in generating 
random numbers from this distribution and 
also in studying its theoretical properties. 
Moreover, it is easy to see X|τ~Np (μ,τ-1 Σ). 
To capture some features of selection variable 
Y, we introduce an additional latent variable 
γd= τ ǀ (X ϵ Ω). Combining Y and the latent 
variable  γ together, we get complete variable 
(Y,γ) 

d
=  (X,τ)  | (X ϵ Ω) with the following 

joint density: 

                                                                   (6)
From (4) and (6), it is easy to show that

                                                                     (7)

In the following subsection, we propose an 
EM-type algorithm for determining the ML 
estimates of the parameters of BMCN(μ,Σ,ν1,ν2) 
based on the joint density in (6). 

Parameter estimation via the EM-type 
algorithm

The EM algorithm is a widely used iterative 
algorithm for ML estimation in the presence 
of missing, censored or latent variables. 
The algorithm alternates between an E-step, 
where the expected value of the complete log-
likelihood function is computed with respect 
to the conditional distribution of the latent 
variables, given the observed data and the 
current estimates of the model parameters, and 
a M-step, where the estimates of the model 
parameters are updated by maximizing the so 
called Q-function obtained from the E-step. 
The EM algorithm guarantees convergence to 
a maxima, of the likelihood function, but it can 
be slow to converge or can get stuck in local 
optima.
To address some of these issues, several 
variants of the EM algorithm have been 
proposed, such as the Expectation Conditional 
Maximization22 (ECM) algorithm and the 
Expectation Conditional Maximization 
Either23 (ECME) algorithm. The ECM 
algorithm replaces the M-step with a series of 
conditional maximization steps (CM) of the 
Q-function with respect to each parameter, 
while holding the others fixed. The ECME 
algorithm extends the ECM algorithm by 
replacing some CM-steps of ECM with the 
CML-step that maximizes the corresponding 
constrained actual-likelihood function, which 
can lead to faster convergence and improved 
estimation accuracy. These algorithms have 
been successfully applied in many problems 
in statistics, machine learning, and signal 
processing.
Let y=(y1,…,yn)

T denote the observed 
data, γ=(γ1,…,γn)

T be the latent variable 
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and yc=(yT,γT)T be the complete data. 
From (6), the log-likelihood function 
of θ=(μ,Σ,ν1,ν2)

T corresponding to the 
complete-data yc, excluding additive 
constants and terms that do not involve 
the parameters of the model, is given by

                                                                      (8)
This function can be maximized to obtain 
the estimate of θ. However, a problem arises 
because the estimate is dependent on the latent 
variables, rendering them unusable. For this 
reason, in the E-step of the EM algorithm, we 
evaluate the so-called Q-function, which is 
the conditional expectation of (8), given the 
observed data using the curr  ent estimates of 
the model parameters, (k) where the superscript 
(k) denotes the estimate of θ at k-th iteration. 
To evaluate the Q-function, we require the 
following conditional expectations:

                                                                     (9)

which is resulting from (7), along with 
k)).(10)

                                                                    (10)

We can then form the objective function 
 as:

                                                         (11)

After performing some algebraic manipulations, 
the CM-steps can be implemented as follows:

here we introduce the notation M1(μ,Σ;
 ) to denote the first moment of a truncated 
multivariate normal distribution on  with 
location parameter μ and covariance matrix
Σ, α1=P(X1 ∈  Ω*), α2=P(X2∈Ω*) where X1~ 
Np (0,ν2

-1 Σ), X2~  Np (0,Σ) and Ω*=(a-μ,b-μ).

CMQ-step 2: Fixing , we can then 
update  by maximizing (11) over Σ. This 
yields
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where 

                                                                 (14)

where M2(μ,Σ; ) denotes the second moment 
of a truncated multivariate normal distribution 
on   with location parameter μ and covariance 
matrix Σ.
Updating 1

(k) and 2
(k) require a bi-dimensional 

search for the root of ν1 and ν2. As pointed out 
by Liu and Rubin21, finding the roots can be 
a slow process in some situations. To avoid 
this obstacle and also eliminate the need for 
calculating the conditional expectation i

(k), we 
may resort to maximizing the restricted actual 
log-likelihood function, yielding the following 
step instead:
CML-step: Update 1

(k) and 2
(k) by optimizing 

the following constrained log-likelihood 
function:

The iterations of the above algorithm must be 
performed repeatedly until a predetermined 
convergence criterion is met. In this paper, 
this criterion is defined in terms of the 
relative change in the log-likelihood function, 
specifically given by the expression 

The goal is for this value to become 
sufficiently small, indicating that the algorithm 
is converging toward a stable solution. For 
practical purposes, we can set this threshold to 
be 10-6, meaning that we will continue to iterate 
until the relative change in the log-likelihood 
falls below this level.

Finite mixtures of bounded multivariate 
contaminated normal distributions (FM-
BMCN)

Let Y1,…,Yn be a random sample from a 
G-component mixture of BMCN distributions. 
The pdf of this mixture model is 

where πg represents the mixing probability with 
0≤πg≤1, 

1

ž
G

g=
∑ πg=1 and Θ=(π1,…,πG-1,θ1

T,…,θG
T)T 

denotes the vector of parameters,     with 
θg=(μg,Σg,ν1g,ν2g)

T denoting the parameters of 
component g.
We introduce a set of membership component 
indicators Zi=(Zi1,…,ZiG )T, which are all binary 
variables. In other words, if this element 
is in the jth position of vector Zi , then Yi is 
allocated to component G. The distribution of 
Zi is multinomial distribution with 1 trial and 
cell probabilities π1,…,πG and it is denoted 
denoted by

Zi ~ Mult(1;π1,…,πG), 

Yi |Zig=1 ~ BMCN(μg, Σg,ν1g,ν2g),
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                                                                 (15)

Maximum likelihood estimates of FM-
BMCN parameters

From (15), the log-likelihood function of 
Θ, ignoring additive constants, based on the 
complete data including the observed data 
y=(y1,…,yn)

T and latent variables γ=(γ1,…,γn )
T 

and Z=(Z1,…,Zn)
T, is 

                                                                (16)

where Ωg=(ag,bg) is the support of the gth 
component.
The conditional expectations involved in the 
Q-function, given current parameter Θ(k), that 
are required are 

                                                          (19)

The resulting Q function is given by

                                                          (20)

With all these, the implementation of the 
ECME algorithm proceeds as follows:

E-step: Given Θ = (k), compute ( )ˆ k
ijz , ( )ˆ k

igγ and 
( )ˆ k
igs  for i=1,…,n and g=1,…,G using (17)-(19);

CM-steps: Update (k) by maximizing 
Q(Θ| (k)) over Θ which leads to
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Where

 Ωg
*=(ag-μg,bg-μg)

CML-step: Update 1g
(k) and 2g

(k) by 
optimizing constrained log-likelihood 
function, given by

Results

A simulation study: recovery of the true 
underlying parameters 

In order to validate the efficacy of the 
proposed algorithm, we have carried out 
a comprehensive simulation study using 
various sample sizes. The primary objective 
here is to assess the accuracy of the estimates 
of the true parameter values. For this propose, 
we used 500 Monte Carlo (MC) samples 
of sizes n =100, 250, 500, and 1000 from 
a two-component FM-BMCN distribution 
under the following scenario: data are 
simulated from FM-BMCN model with 
component parameters π1=0.3, μ1=(1,-1), 
σ1=vech(Σ1)=(1,0.5,4), ν1=(ν11,ν21)=(0.2,0.7) 
and μ2=(3,-2), σ2=vech(Σ2)=(1,0,1), ν2=(ν12, 
ν22)=(0.5,0.5), were vech(.) is the half-
vectorization operator that stacks the lower 
triangular elements of a p×p symmetric 
matrix into a single p(p+1)/2 vector. We 
use the mean absolute bias (MAB) and 
square root of mean squared error (RMSE) 

as efficiency criteria. For a vector of 
parameters θ=(θ1,…,θp), these measures are, 
respectively, defined as

and

where kr denotes the ML estimate of the 
k-th parameter at the r-th replication and θk

A 
represents the actual value of θk.
The experimental results are summarized in 
Table 1, which indicate that the MAB and 
RMSE values tend to decrease with increasing 
sample size. This finding suggests that the 
proposed ECME algorithm can provide 
reliable estimates for the FM-BMCN model. 
Moreover, estimating the ν=(ν1,ν2) parameter 
is complicated due to the flatness of the 
likelihood with respect to it, and this results in 
greater variation.

An application in skin cancer detection

One of the important steps in image analysis 
is medical image segmentation. The objective 
of the skin cancer detection project is to 
develop a framework to analyze and assess 
the risk of melanoma using dermatological 
photographs taken with a standard consumer-
grade camera. Segmentation of the lesion is a 
crucial step to develop a skin cancer detection 
framework. The objective is to find the border 
of the skin lesion. It is important that this step 
is performed accurately because many features 
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used to assess the risk of melanoma are derived 
based on the lesion border. The set of images 
includes images extracted from the public 
databases DermIS and DermQuest, along with 
manual segmentations (ground truth) of the 
lesions is available at 
https://uwaterloo.ca/vision-image-processing-
lab/research-demos/skin-cancer-detection.
Two real skin images are displayed in Figures 
1 (a) and 2 (a). The objective now is to 
segment these images in two labels. Each pixel 

.Table 1. Simulation results based on 500 replications with different sample sizes

Parameter
n=100 n=250 n=500 n=1000

MAB RMSE MAB RMSE MAB RMSE MAB RMSE

π1
0.108 0.116 0.084 0.103 0.065 0.088 0.054 0.072

μ1
0.092 0.125 0.057 0.077 0.037 0.048 0.028 0.033

μ2
0.115 0.157 0.068 0.092 0.043 0.055 0.033 0.045

σ1
0.429 0.642 0.306 0.489 0.191 0.314 0.127 0.199

σ2
0.259 0.382 0.143 0.209 0.115 0.168 0.081 0.125

ν1
0.652 0.810 0.430 0.621 0.266 0.366 0.206 0.265

ν2
0.532 0.733 0.424 0.573 0.259 0.354 0.201 0.259

will have a three RGB intensities between 
0 and 255 which can be transformed into 
Ω=(a=(0,0,0),b=(1,1,1)). The darker the color, 
the lower the intensity, and  vice versa. Each 
pixel will then be grouped into G=2 clusters, 
where every cluster 
will be assumed to have a different distribution. 
Here, we supposes the pixels are independent 
and does not take into account the spatial 
relationship among the pixels.
For comparative purpose, we used the  

Figure 1. Segmentation of lesion (image no.ISIC_0024339): (a) Original, (b) ground truth, (c)-(f) segmented images 
obtained using different models. 
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mixsmsn R package24,25 to fit finite mixtures of 
normal (FM-NM) distributions. Additionally, 
we employed the EM-based algorithms of Lee 
and Scott18 to fit finite mixtures of bounded 
normal (FM-BNM) distribution. The finite 
mixtures of MCN (FM-MCN) distributions 
is also fitted as sub-model of the proposed 
FM-BMCN model. Figs 1 (c)-(f) and Figs 2 
(c)-(f) reveal skin lesion can be caught when 
segmentation is conducted for 2 clusters. 
However, the segmentation accuracies of the 
normal mixture models including FM-NM 
and FM-BNM are quite poor. The proposed 
method yields a better segmentation result, 
with the highest Adjusted Rand Index26 (ARI).

Discussion

Mixture models have been widely used in 
machine learning and pattern recognition for 
statistical modeling. These models have proven 
to be valuable in various applications, such 

as speech and image processing. However, 
one limitation of these models is that their 
distributions are unbounded, with a support 
range of (-∞;+∞). In many real-life scenarios, 
observed data falls within bounded support 
regions. For instance, in image analysis, each 
pixel has a grayscale intensity between 0 and 
255, which can be transformed into the range 
(0;1). Each pixel can then be grouped into 
clusters, with each cluster assumed to have a 
different distribution.
However real data, in addition to being 
characterized by underlying asymmetric 
clusters, are often “contaminated” by outliers 
or otherwise “bad” points. The “bad” points 
refers to points that have a deleterious effect 
on parameter estimation. Thus an important 
practical application is the development of 
methods capable of detecting bad points and 
performing robust parameter estimation when 
they are present.
This paper introduced mixtures of BMCN 

Figure  2. Segmentation of lesion (image no.ISIC_0024352): (a) Original, (b) ground truth, (c)-(f) segmented images 
obtained using different models. 



121

Vol 10  No 1 (2024)

Bounded Multivariate Contaminated Normal Mixture Model ...

Mahdavi A. 

distributions as a model-based clustering 
method for handling asymmetric clusters 
under the presence of outliers. Our research 
also explores the parameter estimation for the 
finite mixtures of BMCN distributions. To 
demonstrate the performance of the proposed 
algorithm, we have successfully applied it to 
cancer lesion detection. The proposed model 
has been able to accurately segment images, 
showcasing the potential of the developed 
method in image analysis and image 
processing. Overall, the proposed algorithm 
offers a reliable and efficient way to model 
many real-world problems, especially in the 
field of image analysis.

Conclusion

The robust model-based clustering was 
enhanced by incorporating finite mixtures 
of BMCN distributions. This approach is 
suitable for modeling complex data with 
outliers and bounded values. To estimate 
the model parameters, an ECME algorithm 
was devised, which includes a selection 
mechanism and closed-form expressions at the 
E-step. Empirical evaluations conducted on 
skin cancer detection images showed that the 
proposed method has successfully enhanced 
accuracy in segmenting skin lesions.
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