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Introduction: Variable selection is increasingly becoming a key step in biomedical research, particularly in high-throughput 
genomic data analysis. One major focus is selecting relevant gene expression profiles associated with time-to-event 
outcomes, such as death. A significant challenge in this context is competing risks, where identifying a small subset of gene 
expression profiles related to the cumulative incidence function (CIF) is essential.

Methods:  Several methods have been proposed for directly modeling CIF, primarily by modeling the subdistribution hazard 
function for the event of interest. We proposed a regularized method for variable selection in the additive subdistribution 
hazards model by integrating five penalized likelihood approaches—Least Absolute Shrinkage and Selection Operator 
(LASSO), Adaptive LASSO (ALASSO), Elastic Net (ENET), Adaptive Elastic Net (AENET), and Smoothly Clipped Absolute 
Deviation (SCAD)—with the pseudoscore method. We conducted Monte Carlo simulations to evaluate the performance of 
our proposed method. Furthermore, the method was applied to a publicly available dataset of 301 patients diagnosed with 
non-muscle-invasive bladder carcinoma from five countries between 1987 and 2000.

Results: Our proposed method was evaluated through simulation studies and applied to genomic data, focusing on 
progression-free survival as the endpoint and identifying the genes associated with the CIF of bladder cancer in the presence 
of competing events. Five genes, namely DCTD, IGF1R, NCF2, PLEK, and CDC20, were consistently identified across different 
penalties. Notably, the overexpression of DCTD and IGF1R was associated with a decreased cumulative incidence of bladder 
cancer progression or death. In contrast, the overexpression of NCF2, PLEK, and CDC20 correlated with an increased 
cumulative incidence of these events.

Conclusion: According to the findings of the simulation studies, all penalties yielded comparable results in terms of 
sensitivity and specificity. However, the AENET and ALASSO penalties demonstrated superior estimation accuracy.
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INTRODUCTION

Over the past decade, significant advancements in molecular biology experimental 
technologies, such as next-generation sequencing and microarray gene expression, have 
led to the accumulation of vast amounts of biomedical data. This progress has facilitated the 

discovery and understanding of molecular mechanisms, biomarker identification, and the development 
of personalized medicine.1, 2 In particular, there is a growing interest in analyzing high-throughput data 
to correlate gene expression profiles with the timing of survival outcomes, such as death.3 However, 
efficient analysis of such data presents challenges due to its high dimensionality—where the number 
of covariates significantly exceeds the number of observations—and the complications arising from 
survival outcomes, such as censoring and truncation.3, 4 The need for appropriate statistical methods 
to analyze this type of data, particularly high-dimensional right-censored data, where many classical 
inference techniques may not be applicable, has spurred numerous theoretical and computational 
advancements. Among these, variable selection has emerged as a crucial technique for identifying 
a small subset of features that help mitigate overfitting in high-dimensional settings. This approach 
enhances both the predictive power and the interpretability of the model.4 A key challenge is the 
simultaneous selection of variables and estimation, which is effectively addressed using regularized 
regression models. Regularization works by adding a penalty term to the model’s loss function, 
which not only shrinks the coefficients toward zero but also sets some coefficients exactly to zero.5 

Penalization methods such as Least Absolute Shrinkage and Selection Operator (LASSO),5 Smoothly 
Clipped Absolute Deviation (SCAD),6 and Elastic Net (ENET) (7) are particularly well-suited for 
handling high-dimensional data, where traditional variable selection techniques encounter substantial 
challenges.8

Regularization techniques for variable selection in high-dimensional time-to-event data have been 
developed beyond the Cox model,9, 10 including the Lin and Ying additive hazards model11 as a beneficial 
alternative. For instance, Lin and Lv introduced a class of regularization methods for simultaneous 
variable selection and estimation in the additive hazards model by combining the non-concave 
penalized likelihood approach with the pseudo-score method.4 Other studies have also employed the 
pseudo-score estimating function for regularized estimation in the high-dimensional additive hazards 
model.12-14 For example, Liu et al. integrated the composite penalty and the pseudoscore in the additive 
hazards regression model under the high-dimensional framework.14 The objective function of an 
additive hazards model offers computationally simpler least-squares estimations than proportional 
hazards models, which is particularly advantageous in high-dimensional studies where computational 
cost is a significant concern.15 Additionally, additive models possess notable characteristics that make 
them especially relevant in epidemiological and clinical research; they pertain to the risk difference 
or excess risk measure, providing insightful information for such studies.4

This model has been utilized only for single survival endpoints. However, competing risks are a 
fundamental aspect of medical research, where treatment responses can be classified based on failures 
due to disease processes or non-disease-related causes. In a competing risk scenario, the occurrence 
of one type of failure precludes the occurrence of others. A typical approach for analyzing such data 
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involves cause-specific hazard regression models. While this method is valuable for investigating 
disease dynamics and gaining insights into disease mechanisms and biological processes, it is less 
suitable for clinical decision support, where considering cumulative incidence probabilities—
reflecting the marginal probability of failure for specific causes—is preferable.1 Several methods 
have been proposed for directly modeling cumulative incidence functions (CIF), involving modeling 
the subdistribution hazard function of the event or cause of interest in a low-dimensional context.16-21 
The analysis of high-dimensional data becomes increasingly complex in the presence of competing 
risks, as the relevant genes associated with different causes of failure can vary significantly. Despite 
the importance of this issue, only a limited number of studies have addressed the challenges in 
analyzing high-dimensional competing risks data. Binder et al. (2009) developed a component-wise 
likelihood-based boosting algorithm designed for variable selection in high-dimensional competing 
risks scenarios, directly modeling the proportional subdistribution hazards (PSH) model.2 Tapak et 
al. (2015) employed the penalized cause-specific hazards method for analyzing high-dimensional 
competing risks data.22 Moreover, Ambrogi and Scheike (2016) proposed a penalized method for 
competing events using a direct binomial regression model.1 In addition, Fu et al. (2017)23 and 
Kawaguchi et al. (2021)24 developed penalized variable selection methods for competing risks in 
the presence of high-dimensional data based on the PSH model. However, a significant gap persists 
in the literature concerning the modeling and variable selection for high-dimensional competing 
risks data in the additive subdistribution hazards model. The only relevant attempt to address this 
issue was a 2016 study conducted by Tapak et al., where a cause-specific penalized additive hazards 
model was applied.25 To address this gap, the current study aimed to develop a penalized additive 
subdistribution hazards model for variable selection capable of handling competing risks in high-
dimensional time-to-event data. Specifically, we sought to compare the performance of five widely 
used penalized variable selection methods: LASSO, Adaptive LASSO (ALASSO), SCAD, ENET, 
and Adaptive Elastic Net (AENET), and to identify genes associated with the progression or death 
from bladder cancer, which may serve as potential therapeutic targets.

We detailed the proposed methodology in Sections 2.1 and 2.2. Then, in Section 2.3, we presented 
simulation studies to evaluate the performance of the approach. Finally, we demonstrated its practical 
applicability using a publicly available bladder cancer dataset.

MATERIALS AND METHODS

The Regularized Additive Subdistribution Hazards Model

For a sample with k competing risk types, let Tk be the time to the kth type of failure, T = min(T1, 
...,Tk) be the failure time, and C be the censoring time. Denote the censored failure time by T* = (T 
∧C) and the failure indicator by =  (   )I T C∆ ≤ , where I (·) is the indicator function. Let Z be a 
p-dimensional vector of predictable covariate processes and assume that T and C are conditionally 
independent given Z. So, the observed data consists of *( , , )i i i iT Zε∆ , where  {1,...,K} iε ∈  indicates the 
(potentially unobserved) type of the event.2, 4 Here, the interest is modeling the cumulative incidence 
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function for failure from cause 1 conditional on the covariates, 1( ; ) ( , 1)F t Z P T t ε= ≤ = , which is the 
expected proportion of patients suffering event 1 over time.

The subdistribution hazard function is defined as:
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In terms of counting process notation, let 1( ) ( , 1)i i iN t I T t ε= ≤ ∆ =  be the number of observed events 
due to cause 1 and ( )( )1( ) 1i i i iY t I T t T t ε= ≥ ∪ ≤ ∩ ≠  be the risk indicator for the ith individual specific to 
cause j = 1. Furthermore, let ri(t)  be the vital status of the ith individual, where ( ) [ ( )]i i ir t I C T t= ≥ ∧  
indicates that individual i has not been censored by the minimum time between Ti and t. In counting 
process notation, Ni1(t) and Yi1(t) can only be computed when ri(t)=1, leading to 1 1( ) ( ) ( )i i ir t N t N t=
and 1 1( ) ( ) ( )i i ir t Y t Y t= . When an individual is censored,  ri(t) =0, and the functions Ni1(t) and Yi1(t) 
cannot be calculated. Nevertheless, it can be shown that ri(t)Ni1(t)= 0 and ri(t)Yi1(t) =0. The risk set 
for the subdistribution hazards model includes full contributions of individuals who have neither 
failed nor been censored by time t as well as weighted contributions from individuals who failed 
prior to t with { }0,1ε ∉ . A time-dependent weight, wi(t), is defined as the inverse probability of the 
censoring distribution for right-censored data, *( ) ( ) ( ) / ( , )i i iw t r t G t G T t = ×  

 

, where (.)G


 is the Kaplan-
Meier estimate of the survival function of the censoring distribution using 1 i−∆ .26 Therefore, the 
contribution to the risk set at time t for individual i is given by 
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We adapt the Lin and Ying additive hazards model for subdistribution hazards. Then, the hazard 
function of a failure time T conditional on a p-vector of possibly time-dependent covariates Z is 
specified as:

                                                            1 01 0( ; ) ( ) Tt Z t Zλ λ β= +                             (3)

where 0 (.)λ  is an unspecified baseline hazard function that is shared among all subjects and  0β is 
a p-vector of regression coefficients (4). 

So, the counting process martingale is defined as: { }t

i i 01 00
( ) ( )  w  (s )Y  (s ) ( ) .T

i iM t N t s Z dsλ β= − +∫       
                                                                                                                              (4)

The pseudo score linear in the β function of the model can be defined as:
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where j j j
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Then, the penalized estimator β̂  is a solution to the regularization problem:
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where ( ), 0,pλ θ θ ≥  is a penalty function that depends on the regularization parameter 0λ ≥  and 
often rewrites as p (·) = (·)λ λρ .4

In this study, we considered five commonly used sparse penalty functions, as listed below.
•	 The LASSO uses the L1-penalty, i.e.    ( )= ; 0ρ θ θ θ ≥ .5

•	 The ALASSO is obtained by applying the LASSO with the assumption of ˆ j jwθ β= , where 
ˆ jw  represents the weight of the jth variable, which can be computed by ˆˆ ini

j jw
γ

β
−

= . γ  denotes a 
positive constant, and ˆ iniβ   comprises a set of initial parameters that can be estimated using ordinary 
least squares (OLS) or ridge regression.27

•	 The ENET combines the L1-penalty ( )=ρ θ θ  and the L2-penalty 2( )=ρ θ θ , yielding a penalty 
in the form of 2( )=( 11- 0) ;a a aρ θ θ θ < <+ .7

•	 The AENET is a combination of the ENET and the ALASSO.28

•	 The SCAD is defined by the derivative  +(a - )( )=I( )+ I( ), 0
(a-1)λ
λ θρ θ θ λ θ λ θ

λ
′ ≤ > ≥ , with some a>2 

as a shape parameter.6

Estimation of β̂  is accomplished through the coordinate descent algorithm (4).

Choosing the Tuning Parameter

After generating a solution path, the optimal regularization parameter λ is selected using a cross-
validation score obtained through M-fold cross-validation. The cross-validation score is defined as 
follows:

( ) ( )( )
1

1 ˆ( ) ( ) ,
M

m m

m
CV L

M
λ β λ−

=

= ∑
                                                                                                                              (8)

where L(m) (.) represents the least squares type loss function computed from the mth subset of 
the data, and ( )ˆ ( )mβ λ−  denotes the estimate derived from the data with the mth subset removed.4 To 
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determine the optimal value of the regularization parameter, λ, this study employed 10-fold cross-
validation. SCAD and ENET penalties include an additional parameter a that needs to be tuned. In 
this study, the method described in (4) was used to determine the value of a for ENET.

Simulation Studies

In this subsection, we conducted Monte Carlo simulations to evaluate the performance of our 
proposed method. Competing risk data with two possible events were simulated: the event of 
interest (I) and the competing event (C). Specifically, we considered two different sample sizes 
n{200, 400}.

The performance of the method was assessed through the following simulation scenarios with 
p{20, 2000} :

Case 1: Only predictors 1 and 10 among the p covariates were informative;
Case 2: Predictors 1, 5, 10, and 15 among the p covariates were informative.

For the informative covariates, we assigned values of 2 and -2 to represent increasing and decreasing 
effects, respectively. Covariates with no direct effect on the hazards were assigned a value of 0. In 
all scenarios, covariates were generated from N(0,1), both independently and in correlation (in the 
correlated case, the correlation between xi and xj was defined as 0.5|i−j|). Additionally, we considered 
coefficient values of 0.5 and -0.5 for the informative variables to assess the performance of the 
proposed method for smaller signals.

Following the methodology outlined by Beyersmann et al.,29 we generated event times based on 
proportional subdistribution hazards. After simulating the covariates, we defined f as the ratio of the 
event of interest (I) to the competing risk (C). The subdistribution for the event I was generated as 
follows: { } 1

1
exp

Pr( , 1| ) 1 1 1 exp( )
p

i i
ii i iT t f t

β
ε =

 
 
 
 
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x
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which is a unit exponential mixture with mass 1-f  at ∞ when all covariates are zero. Here, we 
considered f as {0.2, 0.5, 0.8}. The subdistribution for the second event type was generated using an 
exponential distribution with a rate of 

1
exp( )

p

i i
i

xβ
=
∑  by taking Pr( 2 | ) 1 Pr( 1| )i i i ix xε ε= = − = .

Censoring times were generated using a uniform distribution U(0, a), with the value of a selected to 
achieve censoring for approximately 35% of the observations. Given that the estimated coefficients 
were biased toward zero, we focused on the probability of selecting relevant covariates.

To evaluate model selection consistency, we assessed the performance of different variable selection 
methods by calculating the rate of correctly selected non-zero (informative) coefficients (sensitivity) 
and the rate of correctly non-selected zero (non-informative) coefficients (specificity). These metrics 
indicate the effectiveness of the methods in identifying important variables and shrinking unimportant 
variables to zero, thus serving as criteria for model selection consistency. A total of one hundred 
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replications were conducted for these simulations.
To compare the estimation accuracy of the different methods, we used the L2-loss  (

2
β̂ β− ) and 

L1-loss ( 1
β̂ β− ) as described by Lin and LV (4).

Bladder Cancer Data

In this study, a publicly available dataset (GEO with series accession no. GSE5479) was used 
to illustrate the applicability of the proposed model. The dataset comprised complete information 
on 301 patients diagnosed with non-muscle-invasive bladder carcinoma who underwent surgery at 
hospitals across Denmark, Sweden, Spain, France, and England between 1987 and 2000. This dataset 
includes 1381 measurements of gene expression along with five clinical covariates: age, sex, BCG/
MMC treatment, grade, and the pathological stage of the disease.30

RESULTS

Simulation Study Results

We reported the results of our simulation studies for low-dimensional settings with s = 2 and s 
= 4 for n = 200 and n = 400 under independent and correlated structures for covariates in Tables 
1 and 2, respectively. The standard deviations of the number of selected variables ranged from a 
minimum of 0.62 to a maximum of 3.51 in both tables. Overall, all methods demonstrated high 
sensitivity and acceptable specificity, with no significant performance differences noted between 
the two sample sizes. The results indicated that the variable selection methods performed similarly 
among all scenarios presented in Tables 1 and 2.

In a further analysis, we examined the same settings with the absolute values of the true coefficients 
set to 0.5 for non-zero coefficients. Table 3 summarizes the results for p = 20 under this condition. 
Compared to the previous settings, both sensitivities and specificities decreased; however, they 
remained in acceptable ranges. Additionally, AENET achieved higher specificity and sensitivity in 
most cases. Another notable observation is that LASSO and ENET tended to select more variables 
than the other methods, leading to lower specificity in the majority of scenarios, particularly for 
LASSO. Furthermore, in terms of sensitivity, SCAD exhibited lower values in half of the cases, 
especially when f = 0.8 and the sample size was smaller (n = 200).

We also investigated the performance of different penalization techniques in a high-dimensional 
setting, with findings summarized in Table 4. In this setting, we reported sensitivity and specificity 
metrics for the variable selection methods. Notably, SCAD exhibited superior performance in both 
sensitivity and specificity in high-dimensional simulations in approximately half of the scenarios, 
which may be attributed to the concavity of its penalty function. Nevertheless, all methods performed 
well in specificity across all scenarios. Moreover, LASSO performed the poorest in sensitivity in 
about half of the cases. An additional noteworthy aspect is that, for f = 0.2, LASSO, ALASSO, 
ENET, and AENET tended to select more variables than SCAD. However, for f = 0.5 and 0.8, the 
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number of selected variables was comparable between the methods.

Table 1. Results of various penalized methods in simulation studies under the independent covariates scenario (p = 20), with sample sizes of n 
= 200 and n = 400, number of informative variables (s) equal to 2 and 4, an effect size of 2, and a censoring rate of approximately 35%, across 
100 replicates, in terms of true positive (TP; Sensitivity) and true negative (TN; Specificity).
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0.2 LASSO 2.30 1.00 0.983 4.45 1.00 0.972 2.37 1.00 0.979 4.23 1.00 0.986
ALASSO 2.25 1.00 0.986 4.27 1.00 0.983 2.07 1.00 0.996 4.48 1.00 0.970

SCAD 2.03 1.00 0.998 4.00 1.00 1.00 2.02 1.00 0.999 4.05 1.00 0.997
ENET 2.22 1.00 0.988 4.22 1.00 0.986 2.13 1.00 0.993 4.14 1.00 0.991

AENET 2.10 1.00 0.996 4.20 1.00 0.988 2.12 1.00 0.993 4.10 1.00 0.994
0.5 LASSO 2.21 1.00 0.988 4.45 1.00 0.972 2.37 1.00 0.979 4.23 1.00 0.986

ALASSO 2.19 1.00 0.989 4.26 1.00 0.984 2.11 1.00 0.993 4.23 1.00 0.986
SCAD 2.00 1.00 1.00 4.02 1.00 0.999 2.00 1.00 1.00 4.00 1.00 1.00
ENET 2.04 1.00 0.998 4.11 1.00 0.993 2.15 1.00 0.992 4.24 1.00 0.985

AENET 2.04 1.00 0.998 4.08 1.00 0.995 2.13 1.00 0.993 4.12 1.00 0.992
0.8 LASSO 2.21 1.00 0.988 4.26 1.00 0.984 2.10 1.00 0.994 4.19 1.00 0.988

ALASSO 2.18 1.00 0.990 4.19 1.00 0.988 2.10 1.00 0.994 4.23 1.00 0.986
SCAD 2.07 1.00 0.996 4.02 1.00 0.999 2.01 1.00 0.999 4.02 1.00 0.999
ENET 2.05 1.00 0.997 4.11 1.00 0.993 2.02 1.00 0.999 4.19 1.00 0.988

AENET 2.05 1.00 0.997 4.09 1.00 0.994 2.02 1.00 0.999 4.07 1.00 0.995
v, The average number of selected variables; ALASSO, Adaptive least absolute shrinkage and selection operator; SCAD, Smoothly clipped 
absolute deviation; AENET, Adaptive elastic net

Table 2. Results of various penalized methods in simulation studies under the correlated covariates scenario (p = 20), with sample sizes of n = 
200 and n = 400, number of informative variables (s) equal to 2 and 4, an effect size of 2, and a censoring rate of approximately 35%, across 
100 replicates, in terms of true positive (TP; Sensitivity) and true negative (TN; Specificity).

f = I/C Method
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0.2 LASSO 2.53 1.00 0.970 4.60 1.00 0.962 2.49 1.00 0.973 4.92 1.00 0.942
ALASSO 2.29 1.00 0.984 4.48 1.00 0.970 2.24 1.00 0.987 4.40 1.00 0.975

SCAD 2.03 1.00 0.998 4.02 1.00 1.00 2.05 1.00 0.997 4.06 1.00 0.996
ENET 2.10 1.00 0.994 4.40 1.00 0.975 2.17 1.00 0.990 4.46 1.00 0.971

AENET 2.07 1.00 0.996 4.12 1.00 0.992 2.13 1.00 0.993 4.12 1.00 0.992
0.5 LASSO 2.30 1.00 0.983 4.58 1.00 0.964 2.32 1.00 0.982 4.64 1.00 0.960

ALASSO 2.22 1.00 0.988 4.32 1.00 0.980 2.11 1.00 0.994 4.40 1.00 0.975
SCAD 2.03 1.00 0.988 4.06 1.00 0.996 2.01 1.00 0.999 4.02 1.00 0.999
ENET 2.03 1.00 0.998 4.32 1.00 0.980 2.02 1.00 0.999 4.56 1.00 0.965

AENET 2.04 1.00 0.998 4.30 1.00 0.981 2.07 1.00 0.996 4.06 1.00 0.996
0.8 LASSO 2.23 1.00 0.987 4.54 1.00 0.966 2.12 1.00 0.993 4.40 1.00 0.975

ALASSO 2.15 1.00 0.992 4.42 1.00 0.974 2.20 1.00 0.989 4.32 1.00 0.980
SCAD 2.01 1.00 0.999 4.02 1.00 1.00 2.01 1.00 0.999 4.00 1.00 1.00
ENET 2.03 1.00 0.998 4.62 1.00 0.961 2.06 1.00 0.997 4.34 1.00 0.979

AENET 2.02 1.00 0.999 4.10 1.00 0.994 2.04 1.00 0.998 4.18 1.00 0.989
v, The average number of selected variables; ALASSO, Adaptive Least absolute shrinkage and selection operator; SCAD, Smoothly clipped 
absolute deviation; AENET, Adaptive elastic net



Sparse Variable Selection in Competing Risks Additive Hazards ...

Tapak L et al. 

71J BIOSTAT EPIDEMIOL. VOL. 11, NO. 1, 2025

Table 3. Results of various penalized methods in simulation studies under the independent and correlated covariates scenario (p = 20), with 
sample sizes of n = 200 and n = 400, number of informative variables (s) equal to 4, an effect size of 0.5, and a censoring rate of approximately 
35%, across 100 replicates, in terms of true positive (TP; Sensitivity) and true negative (TN; Specificity).

f = I/C Method
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0.2 LASSO 6.78 0.965 0.818 7.46 0.910 0.761 6.64 0.990 0.833 8.40 1.000 0.725
ALASSO 6.30 0.960 0.846 5.94 0.930 0.861 7.18 1.000 0.801 6.72 1.000 0.830

SCAD 5.80 0.895 0.861 6.66 0.895 0.808 5.18 1.000 0.926 7.20 0.990 0.798
ENET 6.34 0.965 0.845 7.42 0.915 0.765 7.02 1.000 0.811 7.96 0.990 0.750

AENET 5.78 0.965 0.880 5.82 0.855 0.850 5.34 1.000 0.916 6.14 0.995 0.865
0.5 LASSO 5.78 0.970 0.881 6.94 0.965 0.808 5.68 0.995 0.894 6.98 0.995 0.813

ALASSO 5.44 0.945 0.904 5.86 0.925 0.878 5.94 0.995 0.879 5.38 0.990 0.914
SCAD 5.04 0.975 0.921 5.72 0.965 0.874 4.38 1.000 0.975 4.88 1.000 0.943

ENET 6.10 0.970 0.863 6.66 0.920 0.825 5.36 1.000 0.915 7.56 0.995 0.778
AENET 4.90 0.965 0.936 5.00 0.925 0.918 4.68 1.000 0.959 5.26 0.995 0.920

0.8 LASSO 4.74 0.935 0.945 6.46 0.960 0.828 5.50 1.000 0.906 6.80 1.000 0.824
ALASSO 4.54 0.935 0.950 4.74 0.960 0.944 5.06 1.000 0.934 5.24 1.000 0.923

SCAD 4.54 0.900 0.941 4.74 0.815 0.908 4.28 0.985 0.979 5.38 0.985 0.910
ENET 5.10 0.965 0.923 6.32 0.925 0.836 4.86 1.000 0.946 6.78 0.995 0.825

AENET 4.54 0.980 0.961 4.86 0.875 0.915 4.50 1.000 0.969 5.44 0.985 0.906
v, The average number of selected variables; ALASSO, Adaptive Least absolute shrinkage and selection operator; SCAD, Smoothly clipped 
absolute deviation; AENET, Adaptive elastic net

Table 4. Results of various penalized methods in simulation studies under the independent and correlated covariates scenario (p = 2000), with 
sample sizes of n = 200 and n = 400, number of informative variables (s) equal to 4, an effect size of 0.5, and a censoring rate of approximately 
35%, across 100 replicates, in terms of true positive (TP; Sensitivity) and true negative (TN; Specificity).
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0.2 LASSO 7.42 0.745 0.998 9.62 0.763 0.997 8.76 0.945 0.998 12.86 0.898 0.995
ALASSO 7.95 0.850 0.998 8.32 0.795 0.997 7.40 0.965 0.998 10.24 0.985 0.997

SCAD 3.95 0.988 1.000 4.80 0.575 0.999 6.32 0.920 0.999 5.22 0.970 0.999
ENET 8.28 0.715 0.997 8.44 0.790 0.997 7.07 0.981 0.998 9.30 0.988 0.997

AENET 7.90 0.790 0.998 7.44 0.783 0.998 6.92 0.971 0.998 9.45 0.975 0.997
0.5 LASSO 4.44 0.710 0.999 6.98 0.747 0.998 4.90 0.910 0.999 4.58 0.968 0.999

ALASSO 3.62 0.680 1.000 6.61 0.975 0.998 4.22 0.950 1.00 5.28 0.955 0.999
SCAD 4.00 1.000 1.000 5.10 0.830 0.999 4.00 0.975 1.00 4.14 1.000 1.000
ENET 4.57 0.858 0.999 5.64 0.898 0.999 4.18 0.972 1.00 6.00 0.988 0.999

AENET 5.67 0.875 0.999 5.35 0.775 0.999 4.10 0.958 1.00 5.25 0.913 0.999
0.8 LASSO 5.73 0.868 0.999 5.43 0.750 0.998 3.52 0.784 1.00 4.85 0.985 0.995

ALASSO 4.93 0.905 0.999 5.29 0.813 0.999 3.58 0.855 1.00 4.85 0.930 0.999
SCAD 4.00 1.000 1.000 4.33 0.958 1.000 4.22 1.00 0.999 4.10 0.960 1.000
ENET 3.00 0.612 1.000 5.50 0.813 0.999 4.35 1.00 0.999 4.38 0.990 1.000

AENET 5.14 0.785 0.999 5.00 0.918 0.999 4.42 1.00 0.999 5.37 1.000 0.999
v, The average number of selected variables; ALASSO, Adaptive Least absolute shrinkage and selection operator; SCAD, Smoothly clipped 
absolute deviation; AENET, Adaptive elastic net
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Table 5 presents the estimation accuracy of various methods in our simulation studies, focusing 
on three specific cases under the assumption of s=4, p=20, and an effect size of 0.5. These cases 
include independent covariates with two sample sizes (n=200 and n=400) and correlated covariates 
with n=400. ALASSO and AENET produced coefficient estimates closer to the Oracle estimator than 
those obtained from LASSO, ENET, and SCAD in all scenarios.

Table 5. Estimation accuracy results for various penalized methods in simulation studies under the independent and correlated covariates 
scenario (p = 20), with sample sizes of n = 200 and n = 400, number of informative variables (s) equal to 4, an effect size of 0.5, and a censoring 

rate of approximately 35%, across 100 replicates, in terms of L2-loss (
2

β̂ β− ) and L1-loss ( 1
β̂ β− ).

f = I/C Method
n = 200

Independent covariates
n = 400

Independent covariates
n = 400

Correlated covariates
L2-loss sd L1-loss sd L2-loss sd L1-loss sd L2-loss sd L1-loss sd

0.2 LASSO 0.955 0.016 1.927 0.026 0.950 0.008 1.916 0.021 0.953 0.010 1.918 0.019
ALASSO 0.934 0.014 1.905 0.041 0.937 0.013 1.904 0.029 0.936 0.009 1.904 0.031

SCAD 0.956 0.018 1.946 0.050 0.953 0.010 1.913 0.030 0.951 0.014 1.917 0.034
ENET 0.960 0.012 1.936 0.028 0.954 0.013 1.920 0.020 0.945 0.009 1.919 0.019

AENET 0.933 0.015 1.895 0.048 0.936 0.013 1.895 0.026 0.939 0.012 1.989 0.027
Oracle 0.926 0.020 1.851 0.039 0.933 0.011 1.869 0.023 0.934 0.012 1.869 0.023

0.5 LASSO 0.942 0.019 1.895 0.040 0.936 0.015 1.890 0.024 0.937 0.013 1.889 0.024
ALASSO 0.906 0.025 1.849 0.043 0.918 0.012 1.858 0.029 0.919 0.013 1.856 0.031

SCAD 0.952 0.023 1.912 0.049 0.943 0.016 1.885 0.034 0.941 0.018 1.887 0.037
ENET 0.953 0.016 1.905 0.037 0.946 0.013 1.894 0.026 0.944 0.014 1.889 0.028

AENET 0.916 0.018 1.844 0.047 0.922 0.014 1.853 0.034 0.924 0.017 1.854 0.031
Oracle 0.901 0.021 1.802 0.042 0.914 0.014 1.828 0.028 0.912 0.014 1.825 0.028

0.8 LASSO 0.950 0.024 1.912 0.045 0.944 0.020 1.895 0.035 0.945 0.013 1.896 0.028
ALASSO 0.913 0.030 1.842 0.055 0.919 0.016 1.849 0.032 0.914 0.019 1.857 0.032

SCAD 0.951 0.033 1.923 0.055 0.948 0.020 1.891 0.043 0.946 0.023 1.897 0.043
ENET 0.956 0.025 1.917 0.043 0.945 0.018 1.899 0.043 0.946 0.016 1.899 0.034

AENET 0.911 0.032 1.839 0.059 0.923 0.014 1.842 0.039 0.918 0.017 1.846 0.035
Oracle 0.896 0.030 1.792 0.061 0.912 0.020 1.823 0.040 0.914 0.018 1.827 0.036

ALASSO, Adaptive least absolute shrinkage and selection operator; SCAD, Smoothly clipped absolute deviation; AENET, Adaptive elastic net

Figure 1. Number of shared genes identified by different penalized methods for predicting bladder cancer progression or death
ALASSO, Adaptive least absolute shrinkage and selection operator; SCAD, Smoothly clipped absolute deviation; AENET, Adaptive elastic net
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Bladder Cancer Data Results

In our analysis of bladder cancer data, we identified two competing events: time to progression 
or death from bladder cancer (the event of interest observed for 74 patients) and death from other 
or unknown causes (observed for 33 patients). The survival times of an additional 194 patients 
were censored. A 10-fold cross-validation was utilized to choose the optimal tuning parameters. We 
repeated the variable selection process 100 times. Table 6 lists the probes consistently selected in all 
100 iterations. Interestingly, four probes overlapped with those identified by Dyrskjøt et al.30 Figure 
1 illustrates the overlap among probes selected by different penalization methods. Five genes—
CDC20, PLEK, NCF2, IGF1R, and DCTD—were repeatedly detected through various methods. 
Table 7 presents the results of fitting the Lin and Ying additive subdistribution hazards model for 
these five shared genes using two different modeling approaches (univariate and multivariate).

Table 6. Selected genes identified by different penalized methods for predicting bladder cancer progression or death
Gene ID GenBank accession No. Symbol LASSO ALASSO SCAD ENET AENET
SEQ1014 NM_002447.1 MST1R   
SEQ1036 NM_012164.2 FBXW2  
SEQ1037 NM_005127.2 CLEC2B    
SEQ1082 NM_207521.1 RTN4    
SEQ1126 - -  
SEQ1197 NM_003103.5 SON   
SEQ1226 NM_001921.1 DCTD     
SEQ1259 NM_014216.3 ITPK1  
SEQ1262 NM_000875.2 IGF1R     
SEQ1298 NM_000961.2 PTGIS    
SEQ1330 NM_003094.1 SNRPE    
SEQ1337 NM_170744.2 UNC5B    
SEQ139 NM_007002 ADRM1  
SEQ162 XM_088569 PTGR1  
SEQ188 AL117536 NA  
SEQ227 NM_007008 RTN4    
SEQ260 NM_016442 ERAP1  
SEQ288 NM_022126 LHPP  
SEQ312 NM_058242 KRT6C  
SEQ34 NM_000433 NCF2     
SEQ347 NM_001129 AEBP1    
SEQ377 NM_002664 PLEK     
SEQ399 NM_004663 RAB11A    
SEQ494 M87507 IL1BCE  
SEQ567 NM_004046 ATP5F1A 
SEQ634 NM_004453 ETFDH    
SEQ696 NM_000067 CA2  
SEQ813 NM_002206.1 ITGA7    
SEQ820 NM_005916 MCM7   
SEQ833 NM_001255.1 CDC20     
SEQ919 NM_024665.2 IRA1  
SEQ940 NM_020159.1 SMARCAD1    

21 17 7 32 26
ALASSO, Adaptive least absolute shrinkage and selection operator; SCAD, Smoothly clipped absolute deviation; AENET, Adaptive elastic net
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Table 7. Results of fitting the Lin and Ying additive subdistribution hazards model using five shared genes identified by different penalized 
methods for predicting bladder cancer progression or death

Gene
Univariate approach Multivariate approach

Coefficient Standard Error P-value Coefficient Standard Error P-value

DCTD -0.0044 0.0007 <0.001 -0.002 0.0008 0.007

IGF1R -0.0044 0.0008 <0.001 -0.003 0.0008 <0.001

NCF2 0.0037 0.0007 <0.001 0.002 0.0008 0.014

PLEK 0.0033 0.0007 <0.001 0.0008 0.0007 0.275

CDC20 0.0024 0.0003 <0.001 0.0017 0.0003 <0.001

DISCUSSION

In this paper, we evaluated the performance of five commonly used penalized variable selection 
methods in identifying important variables associated with the CIF in the additive subdistribution 
hazards model for competing risks.

Several studies have investigated the efficiency of penalized methods in the context of additive and 
proportional hazards models. In a study by Martinusse and Scheike, different methods were used for 
variable selection in the additive hazards model when analyzing survival data in both high- and low-
dimensional settings. Although the Dantzig selector was the most effective in selecting the correct 
models, LASSO and ALASSO achieved lower MSE. Furthermore, as the sample size increased 
from 100 to 200 and 400, ALASSO demonstrated superior performance compared to LASSO.12 

However, based on our results, the advantage of ALASSO over LASSO in estimation accuracy was 
more pronounced with a smaller sample size (n = 200) than a larger sample size (n = 400). Lin and 
Lv conducted simulation studies to evaluate the performance of various penalized methods such 
as LASSO, ENET, and SCAD in a high-dimensional, low-sample-size setting using the additive 
hazards model. The results indicated that SCAD outperformed LASSO and ENET.4 However, in our 
study, conducted in the presence of competing risks, these methods achieved comparable estimation 
accuracy. Wang et al. investigated the use of AENET for variable selection in the proportional 
odds model and compared its performance against LASSO, ALASSO, and ENET. The simulation 
findings suggested that, in most cases, AENET delivered better performance than the others in terms 
of variable selection accuracy and mean squared error (MSE).31 In the current study, the estimation 
accuracy of AENET and ALASSO was similar and superior to that of the other methods. Bradic et 
al. evaluated the performance of penalized methods in the Cox proportional hazards model through 
simulation studies. According to the results, LASSO underperformed to SCAD in high-dimensional 
settings with 100 observations and either 1000 or 5000 predictors. Specifically, LASSO detected 
fewer true positives, produced more false positives, and demonstrated a higher median prediction 
error (MPE) than SCAD.32 In the present study, in a high-dimensional setting with 2000 predictors 
and 200 or 400 observations, SCAD achieved the highest sensitivity in half of the scenarios, whereas 
LASSO showed the weakest in a similar proportion.

We also compared our findings with studies that focused on competing risks. For example, Fu 
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et al. introduced a penalized approach in the proportional subdistribution hazards (PSH) model to 
identify key predictors for the CIF. Among the penalty techniques explored were LASSO, ALASSO, 
and SCAD. The simulation findings revealed that, for sample size n = 200, ALASSO provided 
superior performance in terms of the Median of Mean Squared Error (MMSE). However, for n = 
400, both ALASSO and SCAD exhibited comparable results, outperforming LASSO.23 Hou et al. 
applied variable selection methods, including LASSO, ALASSO, and boosting, in the proportional 
cause-specific hazards model and the PSH model for high-dimensional data. A set of comprehensive 
simulation studies was designed and conducted to evaluate the performance of these models. 
Although ALASSO outperformed LASSO in some scenarios, it demonstrated weaker estimation 
accuracy compared to the boosting method.33

In this study, all the selected genes significantly affected the subdistribution hazard, thereby 
influencing the CIF of death due to bladder cancer in an unadjusted setting. Moreover, all genes 
except for PLEK were significant in an adjusted setting. The overexpression of DCTD and IGF1R 
genes was significantly associated with a decreased cumulative incidence of progression or death 
from non-muscle-invasive bladder cancer. In contrast, the overexpression of NCF2, PLEK, and 
CDC20 genes showed a significant association with an increased risk of progression or death from 
this cancer.

A few studies have shown a link between elevated expression of the cell division cycle 20 homolog 
(CDC20) and poor prognosis in bladder cancer. For instance, Shen et al. found that the high expression 
of CDC20 was significantly associated with poor overall survival, suggesting its role in bladder cancer 
mortality.34 Likewise, Liu et al. supported the idea that excessive CDC20 expression accelerates 
tumor progression in bladder cancer.35 Other investigations showed that CDC20 expression was 
notably higher in bladder cancer tissues compared to normal bladder tissues.36, 37 Similarly, our results 
suggested that the overexpression of CDC20 increased the risk of progression or death in patients 
with bladder cancer. The impact of pleckstrin (PLEK) on bladder cancer has been reported in only 
a limited number of studies. A study by Zhu et al. indicated that the PLEK gene was upregulated 
in muscle-invasive bladder cancer tissues compared to non-muscle-invasive counterparts.38 Similar 
findings have been observed in other cancers as well. For instance, Yan et al. identified differentially 
expressed genes (DEGs) between gastric cancer and normal gastric samples by analyzing three 
expression profiles. They identified 85 upregulated genes, including PLEK.39 Furthermore, Vuong et 
al. highlighted four potential cancer genes, including PLEK, whose expression levels were associated 
with poorer overall survival rates in patients with melanoma, lung cancer, or colorectal cancer.40 

Our findings indicated that heightened PLEK expression was associated with a greater risk of 
disease progression or death in patients with bladder cancer. Neutrophil cytosolic factor 2 (NCF2) 
has been rarely reported to have prognostic value in bladder cancer. Recently, Ke et al. proposed a 
gene screening method for PSH regression and applied it to non-muscle-invasive bladder carcinoma 
datasets. In their sensitivity analysis, both LASSO and PSH-CSIS+LASSO models selected the same 
five genes as the CoxBoost model. Among these, NCF2 was identified as a risk gene.41 Xie et al. 
also reported that NCF2 expression was higher in advanced bladder cancer tissues compared to 
those in early-stage bladder cancer.42 Our findings also demonstrated that NCF2 overexpression was 
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associated with an increased risk of progression or death in bladder cancer patients. Insulin and 
insulin-like growth factors, including IGF1R, are key regulators of energy metabolism and growth.43 
Previous studies have reported the overexpression of IGF1R in muscle-invasive bladder cancer, 
highlighting its association with tumor outcomes.44, 45 However, our findings revealed that in patients 
with non-muscle-invasive bladder cancer, the overexpression of IGF1R was related to a decreased 
cumulative incidence of progression or death from non-muscle-invasive bladder cancer. This finding 
aligns with a study by Faraj et al., which demonstrated that higher levels of IGF1R expression were 
associated with a favorable tumor recurrence-free survival [OR: 0.58, p=0.021] in patients diagnosed 
with non-muscle-invasive bladder cancer.46 Therefore, further research is required to clarify the role 
of IGF1R in this population. Similarly, the overexpression of the DCTD gene (dCMP deaminase) 
has been associated with shorter survival rates in various cancers, including malignant glioma.47 
In a study investigating the prognostic role of metabolic genes in cancer immunotherapy, Ou et al. 
identified an upregulation of DCTD in bladder cancer cells.48 In contrast, our study found that DCTD 
overexpression in patients with non-muscle-invasive bladder cancer was associated with a decreased 
cumulative incidence of progression or death from bladder cancer. This discrepancy highlights the 
need for further research to understand better the role of DCTD in bladder cancer.

Our study has some limitations. First, to our knowledge, no prior research has compared all five 
penalty functions examined in our study within the additive hazards model or in the context of 
competing risks. Consequently, our findings could not be comprehensively compared to previous 
studies. Second, we included only continuous variables in the simulation and did not account for 
discrete variables, which may limit the generalizability of our findings to real-world scenarios where 
both continuous and discrete variables exist. Third, we focused solely on moderate effect sizes; 
therefore, the performance of our methods in scenarios with smaller effect sizes remained uncertain.

CONCLUSION

The primary objective of this study was to investigate variable selection methods for low- and high-
dimensional competing risk data based on the additive subdistribution hazards model. We evaluated 
five popular penalized variable selection methods: LASSO, ALASSO, SCAD, ENET, and AENET. 
Our Monte Carlo simulation results indicated that while all penalty functions exhibited comparable 
sensitivity and specificity, those based on AENET and ALASSO penalties outperformed the others in 
estimation accuracy. These findings suggested  that AENET and ALASSO were  promising methods for 
variable selection in competing risk analysis in the additive subdistribution hazards model. However, 
further studies should explore alternative variable selection methods, such as genetic algorithms and 
Particle Swarm Optimization, and compare their performance with penalized approaches. Moreover, 
developing survival trees and random forests based on additive hazards models presents an intriguing 
avenue for future research.
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