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Background & Aim: The aim of the current study was to investigate the advantages of Bayesian 
method in comparison to traditional methods to detect best antioxidant in Freezing of human male 
gametes. 
Methods & Materials: Semen samples were obtained from 40 men whose sperm had normal 
criteria. A part of each sample was separated without antioxidant as fresh and the remaining was 
freezed with and without antioxidant. Taurine (in concentrations of 25 mm and50mm) and cysteine 
(5mm and10mm) as antioxidants were prepared as intervention. Traditional results were obtained 
from randomized incomplete block design and compared with Bayesian results in their ability to 
find the significant difference among our groups. Using Markov chain Monte Carlo algorithm within 
the WinBUGS software, we developed a Bayesian approach to estimate the protective effect of 
antioxidant against inverse effect of freezing on the quality of sperm. 
Results: Classic method could detect the significant difference just in cycteine10mm for viability 
which was confirmed by Bayesian method. In Bayesian method, in addition to results from classic 
method, we could find the significant improvement in abnormality: cysteine 10mm, protamin 
deficiency: taurine 25 mm and10 mm, viability: cysteine 10mm, DNA fragmentation: cysteine 10mm 
which all of them was interested in clinically, but could not be proved by the traditional methods. 
Conclusion: Bayesian approach in sperm biology research can be considered as a good replacement 
of the traditional methods for estimation. Using this method, we can solve complex and intractable 
statistical models. Future researches should be done to confirm our suggestion. 
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Introduction1 

To use statistical methods without the use of 
computers, if not impossible, is something very 
difficult. Among the many applications in 
analysis of data provided WinBUGS (version 
1.4.3, Bayesian inferenceusing Gibbs sampling) 
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software is one of the most powerful and 
popular software used for Bayesian analysis (1). 
The development of Markov Chain Monte Carlo 
(MCMC) methods permits inference for 
complex models such as those, including 
random effects, errors in variables and 
hierarchical structures (2).Using MCMC, we can 
implement and estimate complicated models 
such as multivariate models that could not be 
solved with traditional methods easily. 
Biomedical researchers, usually measure several 
variables for outcome. Statistical methods used 

Journal of Biostatistics and Epidemiology 

J Biostat Epidemiol. 2015; 1(1-2): 45-58. 

Please cite this article in press as: Rahimi Feroushani A, Chehrazi M, Nourijelyani K, et al. Bayesian modeling for multivariate 
randomized incomplete block design: application in sperm biology researches. J Biostat Epidemiol. 2015; 1(1-2): 45-58 



Bayesian multivariate incomplete block design 

46 

for the simultaneous analysis and expression of 
several measured variables called multivariate 
analysis. Despite the correlation between 
outcomes even analysis is performed separately 
(3). Since the outcome variables are often 
correlated, multivariate models can be fitted to 
several related outcome variables. This approach 
can keep the alpha level closer to the nominal 
level and may estimate treatment effect more 
efficient, and may provide additional 
information about the relationship between 
variables. Turner (4) has considered multivariate 
models in hierarchical data and its application to 
cluster randomized trials. In biomedical 
research, many statistical methods are used in 
the form of various statistical designs, such as 
randomized complete block design (RCBD) (5). 
In RCBD, each treatment is given once and only 
once in each block. Within a block, the 
treatments are assigned randomly to the 
experimental units. Experimental unit are 
homogeneous in each block and this feature 
reduces variability that is based mainly on 
characteristics of the subject themselves. 
Occasionally, situation arise that each block 
does not contain a complete set of treatments, 
such designs are known as randomized 
incomplete block designs (RIBD) (6). Because 
the data are incomplete treatments and blocks 
are not orthogonal. This non-orthogonality 
makes that residual sum of squares would affect 
then poor estimates of treatment effects will 
produce. RIBD is stratified in mixed models 
class. Sammel et al. (7) has discussed about 
multivariate linear mixed models (MLMM) and 
other related models. In this paper, using 
MCMC algorithm, we develop a Bayesian 
approach to the unknown parameters in 
WinBUGSand apply it in real data. We provide 
a convenient way than traditional methods to 
analyze the data. The main difference between 
the classical statistical theory and the Bayesian 
approach is that the latter considers parameters 
as random variables that are characterized by a 
prior distribution. This prior distribution is 
combined with the traditional likelihood to 
obtain the posterior distribution of the parameter 
of interest on which the statistical inference is 
based. Freezing is a branch of science 

cryopreservation that deals with safeguarding 
long cells at extremely low temperatures (8). 
Cryopreservation typically is carried out in 
infertility treatment centers and maintenance of 
sperm bank and industry of animal husbandry. 
Freezing process always reduces the capacity 
and yield of sperm fertility. In the past few 
years, the effect of different freezing methods 
and environment has been evaluated on sperm 
quality. However, the best environment for 
cryopreservation never has been introduced. 
Therefore, it seems it is essential to introduce the 
appropriate freezing technique and proper 
freezing environment based on experimental 
findings,whereas maintaining sperm quality 
andsurvival rate during the freezing process is 
the main objective of cryopreservation.Hence it 
is important for embryologists what environment 
with what features is better for freezing. 
Considering the benefits of Bayesian methods to 
estimate the parameters rather than classical 
methods (9), we decided to take this approach in 
the field of sperm biology and provide more 
accurate results for researchers in this field. We 
begin by describing the data which motivated 
our research, then formulize the model. This 
paper is structured as follows. Section  
Cryopreservation Data Base  introduce data 
base, Section   Model Formulation   develops the 
classical and Bayesian models, Section   Prior 
Distribution for Parameters   discuss the choice 
and sensitivity to prior specifications. Section            
Results   deals with some further issues and 
summaries the findings. Finally, discuss about 
models and results. The WinBUGS programs 
used and mathematical proofs are included in 
appendices A and B. 

Cryopreservation Data Base 

The data used to demonstrate the models 
discussed in this paper have collected from an 
incomplete block design in area of sperm 
biology and cryopreservation in RoyanInstitute. 
Freezing and storage of human male gametes is 
associated with a reduction in the overall semen 
quality and establishment of pregnancy(10). 
Chemical and physical stress on the sperm 
membrane causes excessive generation of 
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reactive oxygen and nitrogen species and 
oxidative stress (10). It induces membranes and 
nucleus alterations and also sperm DNA damage, 
resulting in loss of motility and decline in sperm 
fertilizing ability. Free radical scavenging 
properties of antioxidant agents may make a 
necessity to use them for maintaining the quality 
of cryopreserved semen (11). Semen samples 
were obtained from 40 men whose sperm had 
normal criteria. The samples were divided into 
two groups of 20. A part of each sample was 
separated without antioxidant as fresh and the 
remaining wasfreezed in three part. One part was 
as control without antioxidant and taurine (in 
concentrations of 25mm and50mm) and cysteine 
(5mm and10mm) as antioxidants were prepared 
for two another parts. Taurine to 20 samples and 
cysteine to other 20 samples was assigned 
randomly. Each group was freezed-thawed and 
evaluated between different concentrations and 
antioxidants with control and fresh. We checked 
the sperm quality in four criteria simultaneously 
including viability, DNA fragmentation, 
abnormal morphology and protamindeficiency. 
The viability of spermatozoa was assessed by the 
Trypan-Blue Stain method, DNA fragmentation 
examined by sperm chromatin dispersion test and 
protamin deficiency examined by Chromomycin 
A3. For the illustration of our methods for 
multivariate outcomes, we have considered this 
data base containing 40 blocks and 160 samples 
totally, which used to compare between groups 
and antioxidants. 

Model Formulation 

In this section, we introduce some notation and 
describe the three models that are considered, 
the model applied for data as RCBD (12) and we 
use a generalized linear mixed model (GLMM) 
(13). This class of models are included both 
continuous and discrete models and when data 
are measured as a continuous, usually follow 
normal distribution. In this paper, the responses 
are measured as a continuous andwe assume that 
are the multivariate normal distribution (3). In 
general model for a single outcome measured for 
each sample is asy��, in which i indicates the 
level of treatment and j is block number: 

y�� = μ + β� + α� + ε��  ε�� = ~N�0, σ���,						α�~N�0, σ��   i = 1,			ich	i	indic 
In our data base g is number of treatment 

levels and equal 6(fresh, control, taurine25 
and50, and cysteine 5 and10) and n is number of 
blocks and equal 40. 

where: μereis the overall mean of response in the 
population of subjects and a constant   β�are constants for the treatment effects, ∑ β�� = 0 α�are independent for the block effects ε�� Are independent and cov α�	, ε��! = 0 

Let, in general, k(<g) is the number of 
treatment that can be applied in any block. So 
we define efficiency factor (EF) of the given 
design as EF = g�k, i k�g, i⁄   . EF is truly a 
measure of the loss in efficiency resulting from 
working with incomplete blocks(14). If EF is 
less than or equal to 0.7 perhaps with a block 
size of k+1 or k+2 should be considered. EF is 
0.9 in our design therefore efficiency is in the 
acceptable range. In the balanced incomplete 
block design(6) the sum of square for 
treatment(SST) is r�EF�∑β�� that r define as 
number of block in which any treatment is 
applied, but obtain the SST in unbalanced type is 
very complicated. The intrablock correlation 
coefficient (ICC) is defined as ICC =σ�� σ�� + )*∑ β��� + σ��+  which, assuming that 
ICC values cannot be negative, is the correlation 
between measurements of individuals within 
blocks. Using ICC also can judge about the 
difference between treatment levels within each 
block. Different types of prior distributions and 
their benefits for ICC in the Bayesian models 
context have been discussed previously (15) 
recommends placing independent prior 
distributions on ICC and σ�� rather than on σ��and σ��, noting that the former choice provides 
an implicit prior distribution for σ�� . We now 
present an initial GLMM for multivariate 
individual-level outcome data, and then consider 
Bayesian approach to it. Four outcomes y��, 
(outcome k for treatment i within block j) let in 
the multivariate form, including inter-outcome 
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covariances at both individual and block levels. 
Model for each outcome is as follows:  y��) = μ..) 	+ β�) + α�) + ε��) y��� = μ..� 	+ β�� + α�� + ε��� y��. = μ... 	+ β�. + α�. + ε��. y��/ = μ../ 	+ β�/ + α�/ + ε��/ 

General form response is as follows: 

Y = 1Y)) ⋯ Y)3⋮ ⋱ ⋮Y*) ⋯ Y*36 
ThatY�� = vec Y��! =  y��), y���, y��., y��/!7. 

The matrix form for multivariate individual-
level outcome is Y�� = U+ B� + A� + Ε��                        (1) 

Where U = �μ..), μ..�, μ..., μ../�7,B� =�β�), β��, β�., β�/�7, A� =  α�), α��, α�., α�/!7~MVN�0, Σ�� and Ε�� =  ε��), ε���, ε��., ε��/!7~MVN�0, Σ�� , cov α�,, ε��,! = 0	∀	i, j, k 

Σ� = ABB
BC σ�)� σ�)� σ�). σ�)/σ��) σ��� σ��. σ��/σ�.)σ�/) σ�.�σ�/� σ�.�σ�/.

σ�./σ�/� DEE
EF,   

Σ� = ABB
BC σ�,� σ�,/ σ�,/ σ�,/σ�,/ σ�,� σ�,/ σ�,/σ�,/σ�,/ σ�,/σ�,/ σ�,�σ�,/

σ�,/σ�,� DEE
EF  

where σ�,,G = corr y��,, y��,G!Hσ�,� σ�,G� ∀	k, kI =1,2,3,4 
andσ�M,G =corr y��,, y��,G!Hσ��� σ�,G� ∀	k, kI = 1,2,3,4 

Model (1) enables us to estimate the ICC 
parameter. The ICC for each outcome k is 
defined as ICC, = σ�N� �σ�N� + )*∑ β�,�� + σ�,� �+   

We consider constraining model (1) by 
assuming the ICC to be identical across all three 
outcomes: σ�)� �σ�)� + )*∑ β�,�� + σ�,� �+ =σ�,� �σ�O� + )*∑ β�P�� + σ�P�+ �		∀k, l	                 (2) 

The advantage of pooling ICC information 
across outcomes is that the single ICC will be 
estimated more precisely than the separate ICC 
values (4).  

 
Regression approach 
The regression approach taken to estimating the 
effect of treatment in Section 3 is improper for 
incomplete design because this model apply for 
complete data. If we use the routine approach 
for incomplete data then error variability 
increase and the results will be distance from 
truth. As mentioned in the introduction 
treatment and block effects are not orthogonal 
in incomplete block design, and so the analysis 
is carried out using the regression (16). One 
disadvantage of incomplete design is the 
assumption that there are no interactions 
between the blocking variable and the 
treatment is restrictive. The analysis is similar 
to the complete design with missing cells. We 
shall explain the regression approach to two-
factor analysis of variance in term of factor 
effects model (2). To express this model in 
regression terms, we utilize indicator variables 
for factor treatment and factor block effects 
that take on the values 1, −1 or 0 as explained 
below. We need a-1 indicator for the factor 
block effects and d-1 indicator variables for the 
factor treatment effects. Specifically, the 
regression model can be expressed in matrix 
notation equivalent to ANOVA model (1) for 
subject in jth block with ith treatment level and kth outcome is: Y��, =μ.., + Block��,⨂A��, + treatment��,⨂B��, +ε��,                  (3)  

where for this study: Block��, = VBlock��,) … Block��,.XY treatment��,= Vtreatment��,) … treatment��,ZY 
are indicator variables for block and 

treatment variable respectively. Block��,[ =
\ 1			if	response	from	block	m, for	i = 1, r, 39			
0				otherwise																																																															  
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treatment��,[ =
\ 1				if	response	from	treatment	m, for	m = 1,				−1			if	response	from	treatment	6																													0			otherwise																																																																							  A��, and B��, are regression coefficients. Var Y��,! = Block��,Var A��,!Block��,7+ Var�ε��,� 

Where Var A��,! is diagonal matrix which 
off-diagonal elements is zero because random 
effects along by different level of blocks are 
assumed uncorrelated. 

The classical multivariate analysis for 
regression approach have discussed by 
(3).Traditional analysis about multivariate 
(multivariate regression) done with SPSS 
(version 16) and has shown in table 1. 
Significant level for this method is 0.05. In the 
next section, we want to model the design in 
Bayesian framework. The coefficients matrix 
will define in the same section. 

 
Bayesian modeling framework 
We design model (3) within the Bayesian 
framework using MCMC simulation(2).This 
allows specification of prior distributions and 
provides a flexible framework to address complex 
models such as (1) and (2), which present serious 
difficulties for classical methods. A practical 
advantage of Bayesian estimation using MCMC 
methods is that it is straightforward to obtain 
interval estimates for any function of the model 
parameters. This enables us easily to construct 

interval estimates for the ICC values, variances 
and for the intervention effects (15). Bayesian 
hierarchical models are used to estimate the effect 
of the intervention. Bayesian models have an 
inherently hierarchical structure (17) a Bayesian 
hierarchical model is defined when a prior 
distribution is also assigned on the prior 
parameters e associated with the likelihood 
parameters θ(17). Writing  y��), y���, y��., y��/!7as 
the vector continuous outcomes is distributed 
according to multivariate normal distribution, we 
assume: Y�� =  y��), y���, y��., y��/!7~MVN μ��, Σg��!  μ�� = Vμ��) μ��� μ��. μ��/Y  Σg��
=

ABB
BC σ���)� + σ���)� σ���)� σ���). σ���)/σ����) ����� + σ����� σ����. σ����/σ���.)σ���/) σ���.�σ���/� σ���.� + σ���.�σ���/.

σ���./σ���/� + σ���/� DEE
EF 

where, μ��, is mean of kth response from ith 
treatment in jth block. Define as below: μ��, =μ..��, + block��,⨂A��, + treatment��,⨂B��,  A��, = Vα��,) α��,� ⋯ α��,.XY7 B�, = hβ�,) β�,� β�,. β�,/ β�,Zi7  

The likelihood function based on the 
multivariate normal density function is as below: L μ��, Σ���, Y��!

= exp lxp	l Y�� − μ��!7 Σ���!m) Y�� − μ��!n2j3/�|Σ���|q.Z  

 
Table 1. Descriptive statistics of sperm parameter in deferent groups 
Intervention Abnormal morphology CMA3 Viability DFI 
Fresh Mean 80.7000 33.6000 90.7750 35.4750 

Std. Error of Mean 0.49897 0.75090 0.56442 0.59699 
Con Mean 86.4250 53.4000 64.0500 65.8000 

Std. Error of Mean 0.35964 1.82321 1.06696 0.75464 
Cys5 Mean 85.9500 44.4000 63.8500 66.0000 

Std. Error of Mean 0.78965 2.56741 2.66979 0.91479 
Cys10 Mean 86.3500 46.1500 65.6500 66.1000 

Std. Error of Mean 0.93267 3.15417 2.08286 1.01800 
T25 Mean 85.8000 60.0500 69.0000 65.6000 

Std. Error of Mean 0.32927 1.43357 1.72138 0.88674 
T50 Mean 85.5500 54.7000 74.3000 61.6000 

Std. Error of Mean 0.28539 1.39567 1.46557 0.96899 
Total Mean 84.7375 47.4125 72.8062 57.7313 

Std. Error of Mean 0.28820 1.03794 1.04002 1.07749 
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where, μ�� is a vector with fourelements 
including mean responses for subject in jth block 
with ith treatment level, and Σ��� is variance-
covariance matrix with dimension 4 is for 
responses in jth block and ith treatments. The 
parameters A��, and B��, reflect the coefficient 
matrix for the block and treatment respectively. 
For a better understanding of notations and 
symbols, we define multivariate modeling at 
individual-level outcome. However, all of them 
have coded to multivariate mode in software. The 
above model can be fitted using SPSS software in 
a non-Bayesian fashion. A Bayesian analysis 
requires, in addition, prior specification for all 
unknown parameters in the model. The posterior 
density function for the model parameters is 
proportional to the product of the likelihood 
function and the prior density of all the model 
parameters. This posterior is computed 
automatically by WinBUGS, so in here no need 
to calculate it. 

Prior Distribution for Parameters 

As vague prior distributions for the regression 
coefficients for each treatment and block level, 
we choose the multivariate normal distribution. 
The Wishartdistribution (3) is a standard choice 
of non-informative prior for a covariance matrix, 
and this would be a possible prior distribution 
for each of Σ� and Σ�. We should specify 
separate priors for different elements within σ��and Σ� because it is not possible to 
incorporate prior information on the ICC when 
using Wishart distributions. When selecting 
prior distributions for the variance parameters in 
the case of four multivariate outcomes, it must 
be ensured that the matrix formed by each set of 
elements is nonnegative definite and thus valid 
as a covariance matrix. In the context of 
multivariate (18), declared prior distributions for 
variance and correlation parameters in the 
bivariate case, but acknowledged the difficulty 
of doing this in the case of three or more 
outcomes, without proposing a solution. We 
develop a solution by considering the 
Choleskydecomposition (19), which ensures that 
a symmetric matrix is non-negative definite if 
and only if there exists an upper triangular 

matrix C such that Σ9C7C and C is unique.The 
derivation of the Cholesky decomposition for 
covariance matrix and the WinBUGS programs 
used are included in appendix B. Σ� is variance-
covariance matrices for regression coefficients 
in each level of treatment effects, where: 

Σr =
ABB
BC σr�� σr�s σr�s σr�sσr�s σr�� σr�s σr�sσr�sσr�s σr�sσr�s σr��σr�s

σr�sσr�� DEE
EF  

The prior distribution for elements within the 
covariance matrices is gamma as non-informative; 
In particular we use the priors given by: �β�), β��, β�., β�/�7~MVN�0, Σr�   α�), α��, α�., α�/!7~MVN�0, Σ��  

where Σr,Σ� and Σ� are positive definite 
matrices, σ�t� ~Γ�0.001,0.001�			, k = 1,2,3,4  σ�,� ~Γ�0.001,0.001�			, k = 1,2,3,4  σr	� ~Γ�0.001,0.001�					, k = 1,2,3,4  icc~beta�0.001,0.001�  corr y��,, y��,G!~u�0,1�  

In our work, we use some priors that (15) has 
investigated like log-uniform, uniform for σ�w� , σ�,�  and uniform shrinkage for ICC and result 
will be compared. 

 
Log-uniform distribution for xyz{ , x|}{  
In this case, we assume a log-uniform 
distribution for σ�~�  andσ�,�  on a bounded range 
(emt,et), thus f σ�,� ! = 1 2aσ�,�⁄ 				exp�−a� < σr,� < ������ f σ�,� ! = 1 2aσ�,�⁄ 			exp�−a� < σ�,� < ������ 

Which ICC prior distribution is as follow (all 
formulas in this section are proven in appendix A), f�icc� = �2a − logiticc� Vicc�1 − icc�4a�Y⁄ 	,				0	< icc < exp�2a� 1 + exp�2a�⁄  

Table 2 shows the result of this prior for 
arbitrarily chosen value a=5. 

 
Uniform distribution for xy}{ ,x|}{  
According to opinion Gelman et al. (20) a 
uniform prior distribution considered for 
variance matrix component, so there: f σ�,� ! = 1 a⁄ 				0 < σ�,� < �   
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Table 2. Posterior estimates for ICC and correlation between four outcomes in full model 
Parameter Posterior mean 2.5 percentile CI Median 97.5 percentil CI 
Corr 0.033 0.001 0.028 0.095 
Icc[1] 0.013 0.006 0.012 0.026 
Icc[2] 0.001 0.0006 0.001 0.001 
Icc[3] 0.0006 0.0004 0.0006 0.001 
Icc[4] 0.0005 0.0003 0.0004 0.0007 

In this model σ�� and σ�� have beta distribution with non-informative hyperparameters 
ICC: Intrablock correlation coefficient; CI: Credible interval 

 
Table 3. Posterior estimates for ICC and correlation between four outcomes I the multivariate model 

Parameter Posterior mean 2.5 percentile CI Median 97.5 percentil CI 
Corr 0.035 0.001 0.030 0.097 
Icc[1] 0.013 0.006 0.011 0.026 
Icc[2] 0.001 0.0006 0.0009 0.001 
Icc[3] 0.0006 0.0004 0.0006 0.0009 
Icc[4] 0.0004 0.0003 0.0004 0.0007 

In this model σ�� and σ�� have Log-uniform distribution with non-informative hyperparameters  
ICC: Intrablock correlation coefficient; CI: Credible interval 

 f σ�,� ! = 1 a⁄ 				0 < σ�,� < �  
Where, the prior distribution is as follow: f�icc� = �1 2icc�⁄ 																icc > 0.51 2�1 − icc��⁄ 				icc ≤ 0.5 

In this case, WinBUGS program was run for 
arbitrarily value 10 for a and the result are listed 
in table 3. Then, we let prior distributions such 
as Uniform-Shrinkage and truncated normal for 
the parameter ICC. 

 
Uniform-shrinkage 
Daniels (21) and Natarajan and Kass (22) 
suggested a uniform prior on the shrinkage 
parameter v = 1 − icc V1 + �k − 1�iccY⁄  for 
producing robust estimators with good 
sampling properties. In appendix A, we show 
that the prior density function for ICC is  
as below: f�icc� = k �1 + �k − 1�icc��⁄ 								0 < icc < 1 

where a log-uniform (−a,a) prior let for σ�,� , 
the marginal distribution for σ�,�  can be obtained 
through mathematical statistics relationships 
(Appendix A).  

The analyses described above cannot be 
carried out in closed form, and even analytic 
approximations can be difficult (23). Bayesian 
analysis has made extensive use of MCMC 
methods, in which sensible values for the 
parameters are simulated from their joint 
posterior distribution. 

The MCMC algorithm used within the 

WinBUGS software is Gibbs sampling (17). 
Version of the software used is 3.0.2 (1).The 
algorithm was run for 43,500 iterations which 
discarding the initial 3500 iterations as burn-in. 
The posterior means and 95% credible intervals 
for parameters are shown in table 4. For test of 
treatment effect, we use credible interval for 
interpret each coefficient and also deviance 
information criterion (DIC) (24), Bayesian 
information criterion (BIC), and 
Akaikeinformation criterion (AIC) for overall 
effect. Latter criterions use for measure the 
goodness of fit of an estimated statistical model. 
Low values of these indicate better-fitted models 
(17). Their formulas are as follows: DIC = p� + D�  p� = D� −D�	  D�θ� = −2 log f�y|θ)!  

where, p� is the penalty for over-
parameterizing the model and θ are the unknown 
parameters of the model and f(y|θ) is the 
likelihood function. 

D� = Expectation D(θ)!  
D� = −2log	(f(y|θ�))  
θ�is the posterior mean of stochastic nodes. 
This criterion is particularly useful in 

Bayesianmodel selection problems where the 
posterior distributions of the models have been 
obtained by MCMC simulation (24). 

BIC = D� + 2Plog(n)  
AIC = D� + 2P  
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Table 4. Posterior estimates for the regression coefficient from the multivariate model 
Groups Effects of antioxidant 2.5 percentile CI 97.5 percentile CI Overall mean 
Fresh -4.419 -5.961 -2.862 

85.33 

Control 1.303 -0.2492 2.853 
Cys 5 0.5894 -1.594 2.787 
Abnormal morphology  Cys 10 0.3383 -1.851 2.567 
T 25 0.8964 -1.31 3.109 
T 50 1.291 -0.9384 3.512 
Fresh -15.1 -16.67 -13.57 48.51 
Control 4.688 3.112 6.227 
Cys 5 9.279 7.072 11.5 
Protamin Deficiency      Cys 10 3.935 1.717 6.141 
T 25 -2.279 -4.522 -0.07297 
T 50 -0.5202 -2.76 1.689 
Fresh 19.49 17.94 21.05 71.32 

 Control -7.215 -8.754 -5.666 
Cys 5 -2.196 -4.391 -0.02061 
Viability             Cys 10 3.092 0.9013 5.264 
T 25 -7.487 -9.679 -5.32 
T 50 -5.688 -7.86 -3.502 
Fresh -24.6 -26.15 -23.04 59.61 
Control 5.711 4.147 7.279 
Cys 5 5.802 3.608 7.982 
DNA Fragmentation      Cys 10 1.801 -0.3862 4.017 
T 25 5.592 3.42 7.783 
T 50 5.693 3.499 7.892 

CI: Credible interval; Fresh: Fresh group; T 25: Taurine 25 group; T50: Taurine 50 group; Cys5: Cysteine 5 group 
Cys10: Cysteine 10 group; Control: Control group  

 
where, P is number of parameters and n is 

number of observations. 
The value of ICC estimate correlation 

between treatment levels in each block. 
Traditional analysis (multivariate analysis of 
variance) done with SPSS (version 16) and has 
come in the result part. Significant level for this 
method is 0.05. 

Results 

In this article, results are divided into two parts 
for better comparison, classic and Bayesian. 
Classic method could detect the significant 
difference between control and case in the 
following group which was confirmed by 
Bayesian method. 

Relative to the control group supplement 
with cysteine (10 mm) improved post-thaw 
viability. Mean difference is significant at level 
0.05 (P < 0.0001). DNA fragmentation: cysteine 
10mm supplementation decreased this outcome 
and mean difference with control group was 
significant (P < 0.0001). In morphology and 
protamin deficiency none of antioxidants show 
any significant effect. All of ANOVA results 

have been shown in table 1. In Bayesian method 
we could find significant improvement in some 
outcomes. DIC, BIC, and AIC criteria is given in 
table 3 which compare full and reduce models. 
We use the credible intervals for significant 
individual regression coefficients in Bayesian 
method, the results for each response is as 
follows: 

As you can see in table 4, overall mean for 
abnormal morphology has obtained 85.33. Effect 
of Fresh group on this response is −4.41, which 
makes the average of this group is less than the 
overall mean. This means that the abnormality in 
this group is less than the general population, 
including frozen groups. Freezing effect on the 
abnormality is 1.3 in the control group, which is 
more than the fresh group and makes 
abnormality average become more than to 
overall mean. As a consequence freezing has 
been increased abnormality. Now we deal with 
the impact of freezing in treatment levels and 
compare the effect of antioxidants in reducing 
the effects of freezing with control group. Effect 
of cysteine antioxidant with dose 5 on this 
response is 0.59, which is less than the control 
group, but still is more than the group fresh. This 
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shows the abnormality in this group being less 
than the control group. Effect of cysteine 10 on 
abnormality is 0.33, which represent more 
effective than dosage 5. The effect of taurinein a 
dose of 25 and 50 are 0.89 and 1.29, 
respectively. Other outcomes are interpreted as 
the same. Overall mean in the second outcome 
protamine deficiency is 48.51. Considering the 
effect of fresh group on this response, the 
protamine deficiency average is less than the 
total population for this group. Effect of the 
control group is 4.68 showing deterioration of 
sperm quality in freezing mode. Between 
treatment groups, taurinewith dose 25 and 50 
indicate better action than other groups 
including control, and reduces the effect of 
freezing on the response. In the third response, 
viability, as you can see in the control group the 
effect of freezing on viability is significant. 
Negative effect for this group has caused the 
average of viability become less than overall 
mean whereas antioxidant cysteine 10 has 
improved viability compared withcontrol group 
because of this antioxidant effect (3.092) against 
freezing is positive. Finally, in the fourth 
response DNA fragmentation the effect of 
control group show large influence of freezing 
on DNA fragmentation and therefore destruction 
was increased. Among the antioxidant groups, 
although there is still increasing in DNA 
fragmentation but the effect of antioxidant 
cysteine 10 is better than others and freezing 
makes that DNA fragmentation not increase 
much. All of improvement was expected 
clinically. Table 2 contains the correlation 
coefficient between responses and ICC that is 
correlation between levels of treatment effect. 

ICC values for all four variables is close to zero, 
which indicates difference in the effects of levels 
on the response because, if the ICC values be 
high therefore the effect of levels are close to 
each other. Tables 3 and 5 show same quantities 
for various distribution of σ�� and σ��  which 
results are similar to table 2. However, in table 
6, a joint ICC is obtained through shrinkage 
parameter, which the value is higher than the 
previous case. ICC can be more for this reason 
that some treatment levels have no significant 
differences and therefore its value has led to 1. 
As we mentioned in previously joint ICC is 
more accurate than individual, which is obvious 
here. As shown in table 7, three criterions have 
been presented for comparing models which all 
of them were calculated in both full and reduced. 
However, these criteria are less so the model is 
better. Here, three criterions know full model 
with treatment is better. Figure 1 shows the 
posterior density plots for the effects of 
treatment. As you can see all of them have 
converged to the normal distribution by Gibbs 
algorithm. Figure 2 to 5 present posterior density 
plots for ICC in various σ�� and σ��  distributions. 

Discussion 

One problem with the model discussed by (7) 
was that overall mean for the effect of treatment 
cannot estimate but in the regression model 
using the Bayesian perspective is estimable. The 
model were presented in this paper is an 
extension of the approaches of (4) for 
incomplete randomized block design. There is 
variation between blocks within each block that 
makes it a correlation is formed.  

 
Table 5. Posterior estimates for ICC 

Parameter Mean 2.5 Median 7.5 
Icc[1] 0.013 0.006 0.012 0.027 
Icc[2] 0.001 0.0007 0.001 0.001 
Icc[3] 0.0007 0.0004 0.0006 0.001 
Icc[4] 0.0005 0.0003 0.0005 0.0007 

In this model σ�� and σ��	 have uniform distribution with non-informative hyperparameters 
ICC: Intrablock correlation coefficient 

 
Table 6. The joint ICC for multivariate model.  

Parameter Posterior mean 2.5 percentile CI Median 97.5 percentil CI 
joint ICC 0.2817 0.006212 0.1987 0.9078 

In this model the shrinkage parameter have non-informative uniform distribution 
ICC: Intrablock correlation coefficient; CI: Credible interval 
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Table 7. Diagnostic criterion for compare full and null 
model 
 FULL NULL 
DIC 4114 5153 
BIC 4399 5471 
AIC 3871 5015 

DIC: Deviance information criterion; BIC: Bayesian information 
criterion; AIC: Akaikeinformation criterion 

 
Acquire this correlation in classical method is 

very complex, however, in Bayesian methods 
such calculations are carried out easily. The 
main advantage of the proposed methods is that 
prior information on the intra-class correlation 
coefficient can be included in the analysis. In the 
traditional methods, estimating ICC in 
multivariate mode is very complex and 
intolerance. Another advantage of the model 
described here is that we can obtain direct 
estimates of factors effect, which make the 
analysis much easier to interpret and more 
plausible, while the estimate of this parameter is 
not customary in the traditional analysis. At 
incomplete designs estimate of parameters is 
affected by missing data therefore, wrong 
inference will come from the wrong results. The 
missing could be estimates by simulation 
methods like MCMC easily with acceptable 
accuracy. In Bayesian methods reflect 
investigators’ prior belief about the strength of 
the investigated association as well as the quality 
of instruments to be used in exposure 
assessment. Such knowledge formally 
incorporates into quantitative rather than 
qualitative appraisal of the data. Both Bayesians 
and frequentists alike have problems to rely on 
prior information in many trials including 
clinical and experimental. However, only 
Bayesians bind themselves to formally 
participate it in analysis. The prior information 
in Bayesians directly affects the estimate, while 
in frequentists does not. There are many ways at 
Bayesian disposal to provide that the faulty prior 
information do not enroll in analyses, such as the 
use of vague, non-informative priors. 

The present methodology deals with a single 
factor. There are interesting issues surrounding 
extensions to multiple factors or combinations of 
factors plus covariates. This methodology, plus 
suitable extensions to incorporate the features 

mentioned should be widely applicable in the 
block design and other design too. 

However, results of a Bayesian analysis are 
sensitive to prior assumptions; we note that 
apparently   non-  informative   priors can be 
strongly influential. 

Earlier using Bayesian perspective was 
discussed by (4) in the multivariate Cluster 
Randomized Trials however, about block 
designs little effort has been taken in the field of 
Bayesian. Future research in this area will be 
required to adapt the methods presented in this 
paper to deal with other types of outcome data 
such as binary, count, nominal and ordinal data 
and other multivariate design such as repeated 
measurement, Latin square, split plot and so on. 
There is still considerable work needed in 
establishing robust strategies for Bayesian 
modeling that will provide convincing and 
generally acceptable results. In the meantime, 
we would recommend using background 
knowledge to produce an informative prior on 
the ICC where appropriate. 

Conclusion 

Bayesian is a well-qualified statistical approach 
in sperm biology research and can be considered 
as a good replacement of the traditional methods 
like analysis of variance. Using this method we 
can solve complex and intractable statistical 
models. Future researches should be done to 
confirm our suggestion. 
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Appendix A 

Cholesky decomposition assume that a 
symmetric matrix Σ is non-negative definite 
matrix when there is an upper triangular matrix 
C such thatΣ = C7⨂C. Let A is a vector of 
independent standard normal variables, where 
Y=C⨂A. The elements of Y will each have unit 
variance with the matrixΣ, the component of 
matrix C is as follows: 

Σ = �s)) s)�s�) s�� s).s�. s)/s�/s.) s.� s.. s./s/) s/� s/. s//� =
�a))				 0a)� a�� 00 00a). a�. a.. 0a)/ a�/ a./ a//� �

a)) a)�0		 a�� a).a�. a)/a�/0						 0 a.. a./0						 0 0 a/��  
where elements of matrix C can be written 

based on Σ matrix elements. Through this 
component matrix C can be obtaind: a)) = √s))  a)� = s)� √s11⁄   a). = s). √s))⁄   a)/ = s)/ √s))⁄   a�� = Hs�� − s���s��  a�. = �s�. − s).s)� s))⁄ � Hs�� − s���s��+   

a�/ = �s�/ − s)/s)� s))⁄ � Hs�� − s���s��+   a.. =
�s.. − s���s�� − ��s�. − s).s)� s))⁄ � Hs�� − s���s��+ ��
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Mathematical solutions for different prior 
density functions are as follows: 

Suppose X and Y have independent gamma 
(a,b) then probability density function for Z = X �X + Y�⁄  obtain as follows: ªZ = X �X + Y�⁄U = X + Y �3«�¬s�®®®®̄ ª X = ZUY = U − ZU ,    J = ± U Z−U 1 − Z± = U f²,³�z, u� = ~��µ¶·�¸~�¹��º�¹�¶���µ�V~�)m¸�Y¹���»�t�»�t�   

Integrating out U reveals a marginal 
distribution f²�z� = )¼�t,t� ztm)�1 − z�tm)	,0 < Z < 1  

whereB�a, b� = »�t�»�º�»�t½º�  and Z has beta 
distribution. 

Let V = LnX and U = 	LnY are independent 
identically distributed as Uniform �a, b� with 
density		f¾�v� = f³�u� = )ºmt, then X and Y have 
Log-Uniform distribution: f¿�x� = 1x�b − a� et < À < eº 

fg�y� = 1y�b − a� et < Á < eº 

Now, we can obtain density function 
for		z = ¿¿½g 

Jacobean for variables Z and U = X + Y is		U. 
The joint distribution for Z and U is then f³,²�u, z� = u )¸~�ºmt� )V~�)m¸�Y�ºmt�   

Integrating out U reveals the marginal 
distribution 
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f²�z� = �ºmt�mPw*�7�¸�¸�)m¸��ºmt�� 	 ,0 < Z < ��·			)½��·			  
Suppose X and Y are independent Uniform 

distributed with limited ranges (0, a) and (0, b) 
respectively. We change this variables to  z = ¿¿½g and		U = X + Y and Jacobean is	U. The 
marginal distribution for Z obtain as bellow: f²,³�z, u� = ~tº  

f�icc� = Â t�º¸� 																icc > 0.5º�t�)m¸�� 				icc ≤ 0.5   

Appendix B 

Applied WinBUGS codes are as follows: 
model{ 

for(j in 1:b){ 
    y[j,1:c] ~ dmnorm(mu[,j] , T[j,1,,]) 
    y.pred[j,1:c]~dmnorm(mu0[,j] , T0[j,1,,]) 
} 
for(k in 1:c){ 
   for(j in 1:b){ 
      x[1,k,j,1]<-1 
      x[1,k,j,2]<-equals(treat1[j,k] , 1) - 
equals(treat1[j,k], 2) 
      for(h in 3:6){ 
         x[1,k,j,h]<-equals(treat1[j,k] , h) - 
equals(treat1[j,k] , 2) 
  } 
     for(l in 7:45){ 
        x[1,k,j,l]<-equals(block1[j,k],l-6) - 
equals(block1[j,k] , 40) 
} 
     mu[k,j]<-  inprod(x[1,k,j,1:6] , beta[1:6,k]) + 
inprod(x[1,k,j,7:45] , alpha[1:39,k]) 
yi.lower.pred[j,k]<-step(y.pred[j,k]-y[j,k]) 
F.pred[j,k]<-sum(yi.lower.pred[1:j,k])/b 
}} 
### priors 
    for(k in 1:c){ 
        beta[7,k]<- -sum(beta[2:6,k]) 
        alpha[40,k]<- -sum(alpha[1:39,k]) 
} 
   for(u in 1:6){ 
       beta[u,1:c] ~ dmnorm(mu2[] ,T2[,]) 
} 
   for(v in 1:39){ 
       alpha[v,1:c] ~ dmnorm(mu2[] , T3[,]) 

}    
   for(k in 1:c){ 
      icc[k]<- 
tau.a/(tau.a+(1/6)*(inprod(beta[2:7,k],beta[2:7,k
]))+tau.e) 
} 
   tau.e ~ dgamma(0.001,0.001) 
   corr1~dunif(0,1) 
    for(j in 1:b){ 
       A[j,1,2,1]<-0 
       A[j,1,3,1]<-0 
       A[j,1,3,2]<-0 
       A[j,1,4,1]<-0 
       A[j,1,4,2]<-0 
       A[j,1,4,3]<-0 
       A[j,1,1,1]<-sqrt(tau.e) 
       A[j,1,1,2]<-(corr1*tau.e)/A[j,1,1,1] 
       A[j,1,1,3]<-(corr1*tau.e)/A[j,1,1,1] 
       A[j,1,1,4]<-(corr1*tau.e)/A[j,1,1,1] 
       A[j,1,2,2]<-sqrt(tau.e- pow(A[j,1,1,2],2)) 
       A[j,1,2,3]<-((corr1*tau.e)-
(A[j,1,1,2]*A[j,1,1,3]))/A[j,1,2,2] 
       A[j,1,2,4]<-((corr1*tau.e)-
(A[j,1,1,2]*A[j,1,1,4]))/A[j,1,2,2] 
       A[j,1,3,3]<-sqrt(tau.e-pow(A[j,1,2,3],2)-
pow(A[j,1,1,3],2)) 
       A[j,1,3,4]<-((corr1*tau.e)-
(A[j,1,1,3]*A[j,1,1,4])-
(A[j,1,2,3]*A[j,1,2,4]))/A[j,1,3,3] 
       A[j,1,4,4]<-sqrt(tau.e - pow(A[j,1,1,4],2) - 
pow(A[j,1,2,4],2) - pow(A[j,1,3,4],2)) 
       for(n in 1:4){ 
       for(m in 1:4){ 
       T[j,1,n,m]<-((1-
equals(n,m))*corr1*tau.e)+equals(n,m)*tau.e 
}} 
} 
       tau.a~dgamma(0.001,0.001) 
       corr2~dunif(0,1) 
##Cholesky decomposition for T3  
       D[2,1]<-0 
       D[3,1]<-0 
       D[3,2]<-0 
       D[4,1]<-0 
       D[4,2]<-0 
       D[4,3]<-0 
       D[1,1]<-sqrt(tau.a) 
       D[1,2]<-(corr2*tau.a)/D[1,1] 
       D[1,3]<-(corr2*tau.a)/D[1,1] 

J Biostat Epidemiol. 2015; 1(1-2): 45-58.  



Bayesian multivariate incomplete block design 

58 

       D[1,4]<-(corr2*tau.a)/D[1,1] 
       D[2,2]<-sqrt(tau.a - pow(D[1,2],2)) 
       D[2,3]<-((corr2*tau.a)-
(D[1,2]*D[1,3]))/D[2,2] 
       D[2,4]<-((corr2*tau.a)-
(D[1,2]*D[1,4]))/D[2,2] 
       D[3,3]<-sqrt(tau.a-pow(D[1,3],2)-
pow(D[2,3],2)) 
       D[3,4]<-((corr2*tau.a)-(D[1,3]*D[1,4])-
(D[2,3]*D[2,4]))/D[3,3] 
       D[4,4]<-sqrt(tau.a - pow(D[1,4],2) - 
pow(D[2,4],2) - pow(D[3,4],2)) 
       for(n in 1:4){ 
          for(m in 1:4){ 
             T3[n,m]<-((1-
equals(n,m))*corr2*tau.a)+equals(n,m)*tau.a 
}} 
tau.b~dgamma(0.001,0.001) 
corr3~dunif(0,1) 
##Cholesky decomposition for T2 
       M[2,1]<-0 
       M[3,1]<-0 
       M[3,2]<-0 

       M[4,1]<-0 
       M[4,2]<-0       M[4,3]<-0 
       M[1,1]<-sqrt(tau.b) 
       M[1,2]<-(corr3*tau.b)/M[1,1] 
       M[1,3]<-(corr3*tau.b)/M[1,1] 
       M[1,4]<-(corr3*tau.b)/M[1,1] 
       M[2,2]<-sqrt(tau.b - pow(M[1,2],2)) 
       M[2,3]<-((corr3*tau.b)-
(M[1,2]*M[1,3]))/M[2,2] 
       M[2,4]<-((corr3*tau.b)-
(M[1,2]*M[1,4]))/M[2,2] 
       M[3,3]<-sqrt(tau.b-pow(M[1,3],2)-
pow(M[2,3],2)) 
       M[3,4]<-((corr3*tau.b)-(M[1,3]*M[1,4])-
(M[2,3]*M[2,4]))/M[3,3] 
       M[4,4]<-sqrt(tau.b - pow(M[1,4],2) - 
pow(M[2,4],2) - pow(M[3,4],2)) 
       for(n in 1:4){ 
           for(m in 1:4){ 
               T2[n,m]<-((1-
equals(n,m))*corr3*tau.b)+equals(n,m)*tau.b 
}} 

} 
 

J Biostat Epidemiol. 2015; 1(1-2): 45-58.  

 




