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Introduction: This study examines the significance of developing a predictive approach for assessing the 
prognosis of individuals diagnosed with COVID-19. This method can help physicians make treatment decisions 
that decrease mortality and prevent unnecessary treatments. This study also emphasizes the significance of 
radiomics features. Therefore, our objective was to assess the predictive capabilities of Computed Tomography-
based radiomics models using a dataset comprising 577 individuals diagnosed with COVID-19.
Methods: The U-net model was applied to automatically perform whole lung segmentations, extracting 107 
texture, intensity, and morphological features. We utilized two feature selectors and three classifiers. We 
assessed the random forest, logistic regression, and support vector machines by implementing a five-fold 
cross-validation approach. Precision, sensitivity, specificity, accuracy, F1-score, and area under the receiver 
operating characteristic curve were reported.
Results: The random forest model achieved an area under the receiver operating characteristic curve, precision, 
sensitivity, specificity, accuracy, and F1-score in the range of 0.85 (CI 95%: 0.76–0.91), 0.75, 0.82, 0.78, 0.68, 
and 0.71, respectively. Logistic regression attained an area under the receiver operating characteristic curve of 
0.80 (CI 95%: 0.72–0.88), corresponding to values of 0.88, 0.62, 0.74, 0.55, and 0.67, respectively. Support 
Vector Machines computed the above six metrics as an area under the receiver operating characteristic curve, 
sensitivity, specificity, accuracy, precision, and F1-score in the range of 0.69 (CI 95%: 0.59–0.79), 0.68, 0.64, 
0.66, 0.5, and 0.57, respectively.
Conclusion: We are developing a robust radiomics classifier that predicts mortality in COVID-19 patients. 
Lung Computed Tomography radiomics features may aid in identifying high-risk individuals who need 
supplementary therapy and decrease the propagation of the virus.
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Introduction 

The coronavirus family comprises viruses 
mostly responsible for inducing human 
respiratory illnesses, including pneumonia, 

bronchitis, and acute chronic respiratory 
distress syndrome. During the first stage, 
infected persons have a substantial surge in 
viral production in their upper respiratory tract, 
which promotes the transmission of the virus 
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to others.1 By July 23, 2020, the World Health 
Organization acknowledged that COVID-19 
had disseminated to more than 170 countries, 
affecting over 15 million individuals globally 
and formally leading to 619,000 recorded 
deaths.2 On January 22, 2023, the global tally of 
afflicted individuals was 664 million, resulting 
in nearly 6.7 million deaths. Also, mortality 
reported in the Eastern Mediterranean region, 
which includes Iran, exceeded 349 thousand 
due to this disease.3 Medical experts have 
suggested utilizing image processing methods 
to predict COVID-19 mortality.4 Technological 
advancements and the growth of data science 
have inundated the world with vast amounts of 
data across multiple scientific disciplines. The 
analysis and interpretation of large datasets 
necessitate novel and intricate methodologies 
to extract valuable information to predict 
disease mortality most straightforwardly.5 
Some patients may need access to medical 
records, which can prevent using methods 
that rely on demographic and clinical factors 

to predict mortality. Additionally, errors may 
arise during the gathering and assessment of 
these variables.6 Machine learning algorithms 
utilizing image processing techniques can 
achieve this goal. The images were preserved 
in their Digital Imaging and Communications 
in Medicine (DICOM) format to ensure 
quality. The necessary features for analyzing 
and predicting mortality were extracted from 
these images.

Materials and methods 

This research is a cross-sectional study that 
investigates patients who were hospitalized with 
COVID-19 at Imam Reza and Qaem hospitals 
in Mashhad, Razavi Khorasan Province, from 
2020 to January 2022. The flowchart of the 
current study protocol is shown in Figure 1. 
This research received clearance from the 
School of Public Health ethics committee 
at Mashhad University of Medical Sciences 
in Iran (approval no IR.MUMS.FHMPM.

Figure 1. Flowchart of the current study protocol
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REC.1401.221). It adhered to the stipulations of 
the Helsinki Declaration. Informed consent was 
obtained from all participants for participation 
in the study.

Study population

This study was conducted on all individuals 
suspected or confirmed to have COVID-19. 
A physician's diagnosis relied on a positive 
Reverse Transcription Polymerase Chain 
Reaction (RT-PCR) test and a Computed 
Tomography scan (CT-scan). These individuals 
were explicitly admitted to the hospital for this 
purpose. Between March 2020 and January 
2022, systematic sampling was used to identify 
1100 patients from a pool of 6271 hospitalized 
patients with confirmed COVID-19. Thirty-two 
participants were removed from the study due 
to the absence of a high-resolution computed 
tomography scan (HRCT) and were substituted 
with other individuals. Out of a total of 1068 
DICOM images, 119 were removed due to their 
unclear nature and inability to be processed. The 
study comprised 577 patients who possessed 
comprehensive data out of the remaining 

949 samples. Among the patients, 380 have 
recovered, while 197 have been deceased. In 
addition, CT images were promptly obtained 
upon patients' arrival at the hospital. Figure 
2 displays examples of the images within the 
dataset for both Recovered and Deceased 
COVID-19 patients.

Image segmentation and image preprocessing 

U-Net, an automated technique based on 
deep learning, segmented the lungs.7  It has a 
U-shaped structure with a contracting path and 
an expansive path also known as an encoder and 
a decoder respectively. Through convolutional 
layers and max pooling operations, the encoder 
gradually decreases spatial dimensions while 
increasing feature depth to capture contextual 
information. The decoder uses transposed 
convolutions to up-sample these feature maps 
back to the original image size and add skip 
connections from the encoder to preserve 
detailed spatial information. The capacity of 
U-Net to function well with little annotated 
data and its efficiency in maintaining fine 
details through skip connections are two of 

Figure 2. Samples of the CT images dataset. (a) images of recovered COVID-19 patients, (b) images of deceased CO-
VID-19 patients.
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its main characteristics.  Furthermore, the CT 
images maintained their original proportions. 
The entire image was normalized by centering 
it at the mean with standard deviation. After 
the segmentation check, the image voxel size 
was changed to have equal dimensions in all 
directions, specifically 1 × 1 × 1. Additionally, 
the image's intensity was divided into 42 equal 
bins.8

Feature Extraction Techniques

Using quantitative characteristics derived from 
radiological images is advancing quickly in 
artificial intelligence.9 The investigation began 
by extracting attributes from images. The 
Pyradiomics library10 is an essential Python 
software tool for extracting radiomics features 
from medical images. radiomics features 
were extracted according to the guidelines 
set by the Image Biomarker Standardization 
Initiative (IBSI).11 These features include 
shape, statistical, and texture features.12 The 
texture features encompass various matrices, 
including the Grey Level Size Zone Matrix 
(GLSZM), Grey Level Co-occurrence Matrix 
(GLCM), Neighboring Gray Tone Difference 
Matrix (NGTDM), Grey Level Run Length 
Matrix (GLRLM), and Grey Level Dependence 
Matrix (GLDM).13 All 107 features, along with 
their names and definitions, are available in the 
Supplementary Data.

Feature preprocessing 

The correlation between the features was 
assessed by applying the Pearson correlation. 
Features exhibiting a high correlation (  > 0.8) 
were eliminated. Due to an imbalanced dataset 
in both the training and test sets, the weighting 

approach was applied only to the training set 
for each model.14

Machine learning algorithms

Following the extraction of features, the 
subsequent stage involved training machine 
learning models and assessing their 
performance using test sets. This study utilized 
the most powerful and widely used machine 
learning algorithms. The machine learning 
algorithms employed for classification were 
logistic regression (LR), random forest (RF), 
and support vector machines (SVM).

Logistic Regression 

LR is one of the statistical approaches used in 
machine learning. In this model, the outcome is 
a binary variable, and the independent variable 
can be any of the quantitative, ordinal, or 
nominal. This model predicts a probability that 
belongs to a particular category with a number 
between 0 and 1.15

Random Forest

RF includes combination algorithms that use 
decision trees as simple and weaker learners. 
As a result, a group of trees decides to form 
a forest, and its decision-making abilities 
surpass those of an individual tree. Each of 
the algorithms performs a learning operation 
after receiving the data. Every one of these 
algorithms predicts a specific outcome.16 The 
RF algorithm can ultimately choose, by voting, 
the group that has won the most votes and 
place it as the final class. Moreover, this model 
is superior to other machine learning models 
due to its straightforward implementation and 
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decreased hyperparameter constraints.17

Support Vector machines

SVM is an architecture that classifies data 
into two groups by assessing the distance of 
individual data points from each category, 
identifying the central point between the two 
groups, and determining the best hyperplane.18 
The hyperplane is . The weights vector is 
denoted as  , the features vector as x, and the 
bias as b.19

Model evaluation 

RF, LR, and SVM models were constructed to 
determine an approach for classifying patients 
in the training dataset. Radiomics features 
were also computed for each individual image. 

The predictive performance was evaluated in 
terms of area under curve (AUC), sensitivity, 
specificity, accuracy, precision, and F1 score. 
The larger the AUC, the higher the prediction 
accuracy.

Result

Table 1 presents a concise overview of the 
characteristics of the population, including age, 
gender, intensive care unit (ICU), length of 
stay, and comorbidities. The clinical attribution 
of patient mortality to COVID-19 disease was 
established. Among the 577 patients studied, 
311 were male, and 266 were female. The 
mean age of recovered patients was 57.57, 
while that of deceased patients was 67.17. 
Age is significantly associated with mortality 
(P<0.001). Of male patients, 199 recovered, and 

Table 1. Demographic and Clinical characteristics of COVID-19 patients

Patient Characteristics
Outcome

P-value
(197=N) Deceased (380=N) Recovered 

Age 16.09±67.17  17.03± 57.57 <0.001a

Sex (Male) (56.09) 112 199 (52.4) <0.306a

Smoking 1 (0.5) 8 (2.1) 0.142b

Hospital Length of Stay 7 (11) 6 (5) 0.077a

Admitted to ICU 123 (62.4) 49 (12.9) <0.001a

Abdominal pain 0 (0.0) 7 (1.8) 0.102b

Vomiting 8 (4.1) 24 (6.3) 0.282a

Diarrhea 3 (1.6) 6 (1.6) >0.999b

Anorexia 17 (8.8) 58 (15.3) 0.030a

Cancer 8 (4.1) 1 (0.3) 0.001b

Liver Disease 0 (0.0) 1 (0.3) >0.999b

Diabetes 27 (13.7) 60 (15.8) 0.507a

Cardiovascular Disease 10 (5.1) 30 (7.9) 0.206a

Asthma 3 (1.5) 4 (1.1) 0.695b

Blood pressure 38 (19.3) 79 (20.8) 0.671a

a, Mann-Whitney U test; b, Fisher exact test
Description as mean standard deviation for quantitative variables that follow a normal distribution, median (Interquartile range) 
for non-normal distributed quantitative variables, and count (percentage) for qualitative variables.
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112 deceased. There is no significant association 
between sex and mortality (P=0.306); among 
those with diabetes, 60 recovered, and 27 
deceased. There is no significant difference 
between diabetes and mortality (P=0.507).
Results were gathered by Python 3.8, scikit-
learn 1.0.3, seg-metrics 1.2.8, and Pyradiomics 
3.0.1. U-Net output was validated with dice 
similarity coefficient (DSC) and average 
symmetry surface distance (ASSD). The DSC 
and ASSD values were obtained as follows: 
Dice, 0.97±0.06 (mean±SD); ASSD, 0.862±0.2 
mm.
RF, LR, and SVM were used for classification. 
For model fitting, hyperparameters were tuned. 
Grid search and 5-fold stratified cross-validation 
were used. The specified hyperparameters were 
presented in Table 2.
The assessment of the model is a crucial 
component of any study. We employed the 
5-fold cross-validation technique in our study 
to obtain more accurate and dependable 
results. The evaluation procedure for the model 
performance utilized metrics such as AUC, 
Precision, Specificity, Sensitivity, accuracy, 

and F1 score.
The confusion matrix was computed for all the 
classifiers to illustrate the percentage variations 
in True Positives (TP), True Negatives (TN), 
False Positives (FP), and False Negatives (FN). 
The results were reported in Table 3. Among 
the 107 features group, after removing highly 
correlated features, as depicted in Figure 3, 
33 different features remained based on their 
importance coefficient. The training phase 
of our predictive model utilized features as 
inputs, with death being the only outcome. 
The distribution of the top 10 most important 
features is illustrated in Figure 4.
The prognostic performance of each machine 
learning algorithm was evaluated for patient 
outcome prediction. Table 4 and Figure 5 
show the evaluated performance of each 
machine learning model constructed using 
radiomics features. As a result of performance 
verification, the RF model AUC, accuracy, 
sensitivity, specificity, precision, and F1-score 
were 0.85 (CI 95%: 0.76–0.91), 0.78, 0.75, 
0.82, 0.68, and 0.71, respectively. The LR 
model AUC, accuracy, sensitivity, specificity, 

Table 2. The hyperparameters of Random Forest, Logistic Regression, and Support Vector   Machines models.
Model Hyperparameters

RF Min samples split: 10, Min samples leaf: 3, Number of estimators: 100, class weight: balanced
LR C: 1, penalty: L2, max iteration: 1000, class weight: balanced
SVM Number of features to select: 24, C: 1000, class weight: balanced

Table 3. Confusion Matrix of Random Forest, Logistic Regression, and Support Vector Machines on the test set. The values of 
the confusion matrix are expressed as Counts and percentages

Model
RF LR SVM

True positive (%) 30 (26) 35 (30) 27 (23)
False positive (%) 14 (12) 29 (25) 27 (23)
True negative (%) 62 (53) 47 (41) 49 (43)
False negative (%) 10 (9) 5 (4) 13 (11)
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Figure 3. Heatmap showing the effect of the features on the training of each machine learning model. The higher the 
heatmap value, the stronger the influence of the feature on the differentiation between the recovered and diseased groups.
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Figure 4. Feature importance of Random Forest (a), Logistic Regression (b), and Support Vector Machines (c) in CO-
VID-19 mortality.
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precision, and F1-score were 0.80 (CI 95%: 
0.72–0.88), 0.74, 0.88, 0.62, 0.55, and 0.67, 
respectively. The SVM model AUC, accuracy, 
sensitivity, specificity, precision, and F1-score 
were 0.69 (CI 95%: 0.59–0.79), 0.66, 0.68, 
0.64, 0.5, and 0.57, respectively. In our work, 
precision and AUC report how well models 
predict patient deaths among patients classified 
as deceased and discriminate between deceased 
and recovered patients, respectively. Therefore, 
these are significant parameters for the models' 
evaluation. 

Discussion 

This study aimed to assess the predictive 
capability of our model in determining the 
mortality of COVID-19 patients using image 
processing techniques. We initially employed 
the class weighting technique within the 
training set to address the imbalanced classes in 
our dataset. We included a total of 577 patient 
images. We performed lung segmentation 
and accurately retrieved unique radiomics 
features. The dataset utilized for the suggested 

Table 4. Logistic Regression, Random Forest, and Support Vector Machines model’s sensitivity, specificity, Accuracy, Precision, 
F1-score, and AUC for classification

Model Sensitivity
%95 CI

Specificity
%95 CI

Accuracy
%95 CI

Precision
%95 CI

F1-Score
%95 CI

AUC
%95 CI

LR 0.88 0.62 0.74 0.55 0.67 0.80
0.76-0.97 0.50-0.73 0.62-0.79 0.42-0.67 0.56-0.77 0.72-0.88

RF 0.75 0.82 0.78 0.68 0.71 0.85
0.63-0.88 0.72-0.90 0.72-0.86 0.53-0.81 0.60-0.82 0.76-0.91

SVM 0.68 0.64 0.66 0.50 0.57 0.69
0.54-0.75 0.57-0.74 0.38-0.63 0.44-0.68 0.59-0.79

Figure 5. Area under the receiver operating characteristic curves (AUC) of Random Forest, Logistic Regression, and 
Support vector machines models.
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approach was gathered from Imam Reza and 
Qaem hospitals and acquired with identical 
CT modalities. Due to collecting the dataset 
from different centers, we rescaled the voxel 
of images using isotropic algorithms. Due to 
imbalanced classes in our dataset, we used 
the class weight to automatically modify the 
importance of each group during the training 
process to ensure that the deceased group is 
given more attention.
Prognostic modeling is a crucial foundation 
for a deeper comprehension of the disease, 
handling it, observing, and determining the 
most effective therapeutic options. Several 
studies have demonstrated the efficacy of 
radiomics-based, clinical-based, or integrated 
models in predicting prognosis in COVID-19 
patients.20

Qiu et al.21 established a radiomics model 
designed to classify the intensity of COVID-19 
infections. (indicating whether they are 
mild or severe) based on CT images. Their 
study encompassed 160 participants in the 
test cohort and demonstrated an AUC of 
0.87. Their findings demonstrated the strong 
efficacy of the radiomics signature in assisting 
clinicians in improved patient management. 
An investigation conducted by Wang et al.22 
used several forms of information, including 
radiomics, clinical and integrated data, to utilize 
a comprehensive predictive model. The model 
accurately predicted patient assignments to 
either aggravation or improvement groups with 
an AUC of 0.84. Although their study showed 
encouraging outcomes, it lacked a substantial 
cohort.
Salimi et al.23 examined algorithms' accuracy 
and diagnostic power, including random 
forests, in predicting mortality in patients 
with COVID-19. Their results showed that the 

random forest model best classifies observations 
based on the AUC. The random forest AUC 
and sensitivity were reported as 0.83 and 0.77, 
respectively. Therefore, their study results are 
similar to the current study's findings regarding 
the classification of observations using the 
random forest algorithm
Al-Areqi et al.24 fitted the random forest model 
to the data in their study and calculated the 
precision, F1 score, and accuracy metrics. 
The findings of this study, similar to our own, 
demonstrated the impact of first order statistical 
characteristics on model fitting. In this study, 
the calculated amount based on the precision 
for the random forest model was reported as 
0.96.
Kim25 performed an analogous experiment 
using a radiomics model that utilized CT 
images. The model was then applied to 500 
patients to classify them based on COVID-19 
and Pneumonia. Their models demonstrated 
precise performance of the assigned task. 
(PPV=0.78 and AUC= 0.83).
Chao et al.26 used several forms of information 
to develop a comprehensive predictive model, 
including radiomics-based features and clinical 
data. Their model achieved an AUC of 0.88, 
predicting whether patients would require 
surgery in the Intensive Care Unit (ICU). Tang27 
evaluated a random forest model of radiomics 
features and laboratory tests to classify patients 
into severe and non-severe groups. On their 
dataset of 118 patients, the model achieved a 
high level of performance (AUC = 0.98). Xu et 
al. 28 performed multicentric research to predict 
admission to the ICU, ventilation therapy, 
and mortality among COVID-19 patients. 
Radiomic features derived from CT scans were 
integrated with clinical and demographic data. 
The evaluation involved 1362 patients across 
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nine hospitals, demonstrating AUC values of 
0.919, 0.916, and 0.853 for ventilation therapy, 
admission to the ICU, and mortality among 
patients, respectively. The radiomics model 
achieved an AUC of 0.80, 0.86, and 0.66 for the 
abovementioned outcomes. Also, they reached 
a precision of 0.24, 0.44, and 0.14, respectively.
Many prior research studies were confronted 
with the shared constraint of a small sample 
size. To test our model's generalizability, we 
repeated our model's evaluation using stratified 
cross-validation. Predicting mortality requires 
the assessment of larger cohorts to create a 
generalizable model. Developing radiomics 
features can aid in prioritizing patients based 
on illness severity, given the considerable 
variability in COVID-19 symptoms across 
patients.
Our research has some limitations: Firstly, 
we excluded clinical data from model 
development. Secondly, we constructed a 
prognostic model using comprehensive lung 
radiomics features. Lastly, no explanation was 
provided for the biological interpretation of 
the radiomics features. The necessity to delve 
deeper into these findings in future research is 
well recognized. 

Conclusion

We developed a radiomics model that provides 
a more accurate prediction of mortality 
in COVID-19 for estimating prognosis in 
COVID-19 patients. We provide evidence that 
radiomics features can serve as criteria for 
prognostic modeling in COVID-19. Modeling 
RF with radiomics features provided the highest 
performance compared to the LR and SVM 
models. Also, another principal finding of this 
research is that first order statistical features are 

worth more than other radiomics features.
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