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Background & Aim: Simulation studies are important statistical tools to investigate the performance 

of statistical models in specific situations. For a binary outcome and exposure, one of the most 

important statistical measures will be the risk difference (RD). To assess the quality of estimators in 

estimating the effect of the exposure, a data set with a specific effect measure is require. 
Methods & Materials: Monte Carlo simulation can be helpful in situations when there is a proper 

data generating process. In this paper, another technique will be presented to generate data with 

specific marginal risk difference (MRD). 
Results: Convergence of simulation methods in the same scenario reached in a few iterations using 

the proposed method. 
Conclusion: The proposed method is recommended over the current method due to less time 

consumption; this issue is important in studies with different scenarios. 
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Introduction
1
 

Estimating the causal effects of exposure 

using observational data is a common problem 

in medical research (1, 2). In ideal randomized 

experiments, association measures can be 

interpreted causally as randomization ensures 

that the exposed and the unexposed are 

exchangeable. In observational studies, however, 

association does not ensure causation; 

association measures cannot be interpreted 

causally since the exposed and the unexposed 

are not generally exchangeable (3). 

When randomization is not feasible and 
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observational data are required to be used to 

estimate marginal treatment effect, one of the 

most important measures of association is risk 

difference (RD) and number needed to treat (1). 

Monte Carlo simulation is an important tool in 

modern statistical methods. Simulation methods 

allow researchers to investigate the efficiency of 

estimators in settings in which mathematical 

derivations are difficult. However, the use of 

Monte Carlo simulation relies on the existence of 

well-suited data-generating processes.  

With the binary outcome and exposure, it is a 

difficult task to generate a data with a specific 

marginal risk difference (MRD) from a 

conditional data-generating process (4). 

Several methods have been proposed for 

different study designs and complicated 

statistical models. As an example, Austin and 

Stafford introduced a method for generating data 
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with specific marginal odds ratio (5). Austin 

proposed a method for data generation with 

specific MRD or number needed to treat (1). 

Leemis et al. explained a method to generate 

data for accelerated life and proportional hazards 

models with time-dependent covariates (4). 

Bender et al. proposed a method to simulate 

survival times for a Cox proportional hazards 

model (6). Lunn and Davies proposed a method 

for generating correlated binary variables (7), 

and recently, Austin proposed a method for 

generating survival times in Cox proportional 

hazards models with time-varying covariates (8). 

Based on literature review performed by the 

researchers in the present study, only the method 

proposed by Austin generated the data with 

specific MRD (1). Generating a scenario in this 

method takes almost 1 hour. In case of diversity of 

scenarios, using this method is time-consuming 

and needs iterative Monte Carlo simulations.  

The objective of the current study was to 

present a method with less time consumption and 

lacking the need for iterative procedures. The 

remainder of this article is organized as follows. 

Section 2, reviews the method proposed by Austin 

(1). Section 3 presents notation used in the data 

generating process. Section 4 demonstrates the 

new proposed method using an example. Finally, 

Section 5 summarizes the results and concludes 

with a discussion of the findings. 

Methods 

Review of the current method: Austin (1) 

proposed a method for generating data with 

specific MRD. This method will be described 

briefly in the following. 

Based on the known relationship between 

exposure and outcome, it was found that the 

conditional effect of treatment (β) induced a 

specific MRD.  

Using counterfactual framework, two 

potential outcomes were assumed for each 

subject, and then the probability of these 

counterfactual outcomes (all subjects were 

considered treated and untreated simultaneously) 

were defined; thus: 
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Austin (1) has defined the marginal 

probability of success as: 
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The method was based on iterative 

computation of the MRD for specific values of 

  using Monte Carlo integration. The iterative 

process allows selecting the value of β which 

induces a MRD. Suppose that β (k) denotes the 

value of β at the kth iteration. Using p, 

explanatory variables             were 

generated randomly for each of n subjects from 

a specified distribution. At kth step of Monte 

Carlo simulation, the probability of success in 

case of treatment was computed as follows 
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And if untreated:  
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Then, the mean of each of these two 

probabilities across the simulated data should be 

computed: 
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In the next step, the empirical MRD was 

calculated as: 
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The empirical MRD  ( )
( )

 represents the MRD 
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in the nth randomly generated data set at the kth 
step of the iterative process. This process is then 
repeated across 1000 simulated data sets and the 
mean MRD is determined as  

 ( )  
 

    
∑  ( )

( )    
   . The quantity  ( ) 

represents the empirical MRD after the kth step of 
the iterative process. To calculate β, Austin (1) 
used bisection method to determine a solution to 
an equation. It was reported in this study that 
computations for each sensible scenario required 
fewer than 52 minutes in R Version 2.8.0 (R Core 
Development Team, 2005). 

In the present study, RD was considered as a 
measure of association. RD is defines as a 
difference between marginal probability of 
outcome in treated and untreated subjects.  

Changes in the marginal probability: Suppose 

t p confounders              . Y = 1 denotes 

success. If π denoted the probability of success, the 
relationship between the confounders, treatment 
status, and the logit of the probability of outcome 
could be described as below: 

 

     ( (   ))               

                                              (1) 
 

   and    were categorical and continuous 

variables, respectively, and Tr was treatment 

status. Probability of outcome in treated and 

untreated subjects could be defined as below: 
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Using the joint probability of the categorical 

variables in the present study, the population could 

be reconstructed to new subgroups. For example, 

in case of having one binary variable (X1) (with the 

coefficient of α1), two new sets could be defined 

with logit of the baseline probability equal to    

and (     ).     and (     ) were called as 

“constant part” of the model. In other words, 

different categories could affect the baseline 

probability (or the intercept term of the model).  
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For k standard normal variables, the sum of 

these k independent normal variables was 

normal with variance equal to λ:  
 

    (   )   ∑       (    ∑  
 )  

       (5) 
 

All of the continuous variables could be 

summarized into one component; this part of the 

model (Z) was called as “random part”. 

According to the above paragraphs, for each 

combination of categorical covariates, the 

equation (1) could be rewritten as: 
 

     ( (   ))                

                      (6) 
 

Adding categorical variable to the model 

changed the baseline prevalence; in other words, 

a shift emerged in the intercept, so the marginal 

probability could be easily computed in treated 

and untreated subjects.  

When the model contained continuous 

variables, compute marginal probability had to 

be computed using Monte Carlo integration. 

Adding a continuous variable into the model 

could be considered as adding a random part 

into the model.  

In this part, it was shown that what changes 

will happen in the marginal probability by 

adding continuous variables into the model. 

The effect of different levels of the random 

part was evaluated in altering the marginal 

probability. The variation in the random part 

(continuous variable) was set 0 to 3 with 0.01 

increments, and simultaneously, the constant 

part was changed from 0.0 to 1.0 with 0.0001 

increments. Table 1, which is shown partially 

below, can be found in the appendix. Each row 

in this table corresponds to one of the baseline 

probabilities, and columns show the related 

marginal probability corresponding to particular 

random part (continuous variables). 

In figure 1, the graphs were plotted for the 

random parts equal to 1, 2…, 7. Each of the 

curves corresponds to the probabilities of one of 

the random parts, and the red curve, which lies 

on the bisector of the first and third quadrants, 

represents the original values. 

In the presence of the random part with 
variance of λ, different marginal probabilities 
existed for a fixed baseline probability (p).  
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Table 1. Different values of marginal probability corresponding to different random parts 

Fixed part (baseline P) 
Random part (λ)   

0.1 0.5 1.0 1.5 2.0 2.5 3.0 5.0 7.0 

0.05 0.0521 0.0611 0.0727 0.0842 0.0954 0.1057 0.1158 0.1500 0.1770 

0.10 0.1035 0.1176 0.1340 0.1485 0.1617 0.1736 0.1847 0.2190 0.2441 

0.15 0.1543 0.1708 0.1884 0.2033 0.2168 0.2283 0.2385 0.2700 0.2922 

0.20 0.2046 0.2214 0.2385 0.2529 0.2651 0.2756 0.2845 0.3120 0.3310 

0.25 0.2545 0.2702 0.2859 0.2983 0.3089 0.3185 0.3259 0.3485 0.3640 

0.30 0.3039 0.3176 0.3312 0.3414 0.3497 0.3579 0.3638 0.3819 0.3946 

0.35 0.3532 0.3643 0.3748 0.3827 0.3894 0.3945 0.3995 0.4132 0.4225 

0.40 0.4022 0.4101 0.4165 0.4226 0.4266 0.4303 0.4332 0.4429 0.4490 

0.45 0.4512 0.4549 0.4584 0.4612 0.4639 0.4659 0.4672 0.4169 0.4748 

0.50 0.4999 0.5000 0.4994 0.5000 0.5004 0.4996 0.4996 0.4999 0.4999 

0.55 0.5488 0.5448 0.5415 0.5387 0.5368 0.5348 0.5326 0.5283 0.5253 

0.60 0.5976 0.5899 0.5831 0.5776 0.5733 0.5696 0.5666 0.5569 0.5509 

0.65 0.6467 0.6356 0.6253 0.6173 0.6110 0.6055 0.6005 0.5868 0.5775 

0.70 0.6959 0.6822 0.6686 0.6581 0.6497 0.6428 0.6365 0.6179 0.6056 

0.75 0.7454 0.7296 0.7139 0.7011 0.6911 0.6823 0.6742 0.6512 0.6356 

0.80 0.7952 0.7784 0.7612 0.7471 0.7343 0.7249 0.7156 0.6879 0.6690 

0.85 0.8450 0.8292 0.8116 0.7962 0.7830 0.7717 0.7609 0.7300 0.7078 

0.90 0.8964 0.8824 0.8659 0.8516 0.8382 0.8262 0.8155 0.7808 0.7556 

0.95 0.9478 0.9389 0.9273 0.9157 0.9045 0.8940 0.8841 0.8498 0.8228 

 

 
Figure 1. Baseline and marginal probability 

 

For example, with random part of 3 and 

baseline probability of 0.2, the marginal 

probability of outcome was equal to 0.2847. It 

meant that the probability of outcome changed 

from 0.2000 to 0.2847, and if the random  

part equaled 10, the marginal probability 

reached 0.4455. 

Increasing the random part, the probability 

approached 0.5. Changes in probabilities were in 

the form of centralizing, meaning converting the 

baseline probability into 0.5. Based on figure 1, 

the rate of convergence increases with an 

increase in the random part. 

Changes in the population probabilities: In 

the presence of the random part, which value of 

baseline probability can be reached in case of 

having a definite RD? 

In the potential outcome framework, each 

subject has two counterfactual outcomes: one for 

Tr = 1 and one for Tr = 0 ( ( )  ( )); thus, two 

probabilities can be obtained as: 
 

        (                     )   

(7) 
 

        (                   )  
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And MRD can be defined as: 
 

     ̅   ̅ ( )  
 

In case of two binary variables and k 

continuous variables, as noted earlier, the 

population can be reconstructed into four 

subpopulations with different baseline 

probabilities. Now, the effect of the random part 

on the whole population will be shown using 

table 1. 

The values in the second column of table 2 

are baseline probabilities in each of the 

subpopulations. After the inclusion of 

continuous variables in the model, calculating 

the probability of each subject, and averaging, 

the marginal probability would be included in 

untreated subjects, shown in column 3.  
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Table 2. Baseline and marginal probabilities in treated and untreated subpopulations 

Subpopulation Baseline P untreated Marginal P untreated Marginal P treated Baseline P treated 

x1 = x2 = 0 p1   
    

 +RD   
   

x1 = o, x2 = 1 p2   
    

       
   

x1 = 1, x2 = 0 p3   
    

       
   

x1 = 1, x2 = 1 p4   
    

 +      
   

 
 

By adding the desired RD to marginal 

probability of untreated subjects, the marginal 

probability among treated subjects will be as 

column 4. According to table 1, one can check 

which values of baseline probabilities (column 

5) correspond to these marginal probabilities. 

For example, when random part equals zero 

(Z = 0) in the first sub-population, after re-

writing equations (4) and (5), we have:  

 

               (  )                         (10) 
 

             (  
  )                       (11) 

 

       (  
  )       (  )                     (12) 

 

According to table 3, β can be computed for 

each sub-population. 

 
Table 3. Logit (p) of baseline probability in different 

subpopulations 

Subpopulation Untreated Treated 

x1 = x2 = 0 α0   
        

x1 = o, x2 = 1 α0 + α2   
           

x1 = 1, x2 = 0 α0 + α1   
           

x1 = 1, x2 = 1 α0 + α1+ α2   
              

 
To generate a data set with desired marginal 

RD, one can: 

1. according to collapsibility of RDs (9), 

generate data in a way that each part of the 

data is generated with its own β. 

2.  compute total β through one of these 

methods: 

a. Computing total β as a weighted combination 

of these βs. 

After computing β for each part of the 

population, one can assume that the total β is in 

the range of these βs. Then, the total β can be 

found using bisection method.  

Results 

The above algorithm was explained with  
an example: 

Two binary variables with marginal 
probabilities were present equal to 0.2 and 0.5, 
and the joint probability as bellow: 

 

 0 1  

0 0.15 0.05 0.2 

1 0.35 0.45  

 0.5   
 

In case of generating a data set with  
RD = +0.05 with baseline probability of 
outcome equal to 0.15, two binary variables with 
parameters 0.2 and 0.5, OR = 2, and 4 standard 
normal variables with OR equal to 2.0, 1.5, 2.0, 
and 3.0, β will be computed as below (Table 4):  

 

     ( (   ))               
                          

  ∑  
    ((    )  (      )  

(    )  (    )  )   

𝜆=2.232 
 0=log(0.15/0.85)=-1.735 

A comparison of RD with corresponding β is 
summarized in table 5. In this example, the 
second method (bisection method for calculating 
β) yielded the best result compared to the other 
methods.  

 
Table 4. Baseline and marginal probabilities in treated and untreated subpopulations in the example 

Proportion in 

population 

Baseline probability of 

untreated (p0) 

Marginal probability 

(λ = 2.33) 

Baseline probability of 

treated (  
 ) 

βi 

0.15 0.1500 0.2245 0.2025 0.3638 

0.05 0.2610 0.3236 0.3238 0.3044 

0.35 0.2610 0.3236 0.3238 0.3044 

0.45 0.4138 0.4389 0.4845 0.1285 
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Table 5. Estimates of β and calculated risk difference (RD) 

Method Estimated β RD 

1 - 0.05440 

2.a 0.2342 0.03540 

2.b* 0.3270 0.04995 

Austin 0.3270 0.04999 
*After 5 iterations 

Discussion  

The objective in this article was to describe a 

data-generating process for binary outcomes 

with a specific MRD. This method was based on 

the changes in baseline probability of the 

outcome due to the entrance of continuous 

random variables and binary treatment.  

In brief, data sets were generated with 

different final normal distribution (sum of 

various normal distributions) and the marginal 

probability for each condition was computed 

with regard to different baseline probabilities 

varying from 0 to 1 with 0.0001 increments (the 

supplementary file). Therefore, according to the 

joint distribution of categorical variables and using 

probability table, one can find the coefficient of 

treatment inducing the desired MRD in each 

subpopulation and then compute total β. 

Although the logic of both methods is the 

same and based on the changes in the marginal 

probability in treated and untreated subjects, the 

method presented in this study outperformed the 

method proposed by Austin (1) due to shorter 

time to reach the coefficient of 

exposure/treatment and lack of requiring iterative 

methods. This method can be very helpful in case 

of presence of many different scenarios. 

In the method presented in this study, adding 

continuous variables imposes not a special 

problem in simulation process. These variables 

affect the marginal probability through their 

variances, and the effect of these variables can 

be assessed using the sum of them as a single 

new variable. 

Another interesting finding is that, in case of 

changing the fixed part from p to (1-p), the same 

change can be observed, but in the opposite 

direction. For instance, when the random part 

equals 3, considering a baseline probability of 

0.88 (1-p) instead of 0.12, then a marginal 

probability of 0.7927 will be achieved. With 

some rounding error, the difference between this 

value and 0.5 is equal to the difference between 

0.2073 and 0.5. 

When baseline risk (p0) is changed to 1-p0, 

the sum of two marginal probabilities will be 

equal to 1.  By changing the random part, the 

difference of both from 0.5 will be the same. 

According to figure 1, when the random part 

increases, both values approach 0.5. In small 

fixed part (close to zero), larger random parts are 

needed to achieve 0.5. If p0 was around zero, all 

the values would approach 0.5 and the dominant 

part would be the random part.   

In the hypothetical scenario in this study, β 

equals 0.3270 and 32703 using the Austin method 

(1) and the bisection method of this study, 

respectively. In order to calculate the coefficient 

of treatment, Austin’s method used iterative 

Monte Carlo method, which is time-consuming 

and needs generating data for each scenario. 

With this method, the problem of using 

Monte Carlo integration was solved in order to 

calculate marginal probabilities, and in case of 

large simulation studies with this method, time 

is saved and different protocols can be defined. 

For example, there is no difficulty in the case of 

a design with correlated variables, as according 

to the variance formula for correlated variables, 

only it is needed to modify the random part and 

use the described algorithm. 

The bisection method was used to find the 
final solution (the desired RD was reached after 
few iterations). 

Different authors have proposed estimators 
for causal RD (6, 10-14). The results of the 
current study can be used to compare 
performance of these estimators. 

For each hypothetical scenario, with the 
current method, all computations will be 
completed within almost 5 minutes with a 
system with a configuration of random access 
memory (RAM) 16.8 gigabytes (GB) and 
Core™ i7-4770 central processing unit (CPU) 
3.40 GHZ, which is very helpful in large 
simulation studies. Additionally, an iterative 
method will not be necessary for estimating the 
coefficient of treatment. 

Conclusion  

To summarize, the proposed method in this 
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study is recommended over the current method 

due to less time consumption; this issue is 

important in studies with different scenarios.  
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