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Introduction:  Confidence intervals (CIs) provide a more precise evaluation of outcomes, especially when the risk of an 
event is influenced by cluster size. While confidence intervals are commonly used to assess uncertainty in future data, in 
this study, we focus on their role in quantifying variability within currently observed outcomes. Specifically, the width of 
the predicted confidence interval serves as an indicator of existing intra-cluster heterogeneity, highlighting the extent of 
variability across different cluster sizes.
This study introduces a novel method for evaluating observed outcomes of dichotomous random variables in datasets 
with unequal binary cluster sizes. By employing a robust neighborhood confidence interval width, this approach ensures 
a more reliable and adaptive estimation of intra-cluster variability, allowing for a more accurate interpretation of current 
data distributions.

Methods:  We introduce a novel algorithm for constructing an intra-cluster robust neighborhood confidence interval and 
its corresponding width for each cluster. This method enables the ranking of clusters based on confidence interval width, 
from the narrowest to the widest, providing a systematic approach to quantifying intra-cluster variability. By evaluating 
observed values within these ranked intervals, the algorithm offers a more precise assessment of data heterogeneity. To 
illustrate the effectiveness of this method, we present both a simulated example assessing its finite-sample performance 
and a real-world application in the context of antimicrobial resistance data with unequal binary cluster sizes.

Results:  The robust neighborhood intra-cluster confidence interval (CI) width was successfully derived for interpreting 
binary outcome data with unequal cluster sizes. The analysis showed that narrow confidence intervals indicate minimal 
random variation, suggesting higher reliability in the observed results, whereas wider intervals highlight increased intra-
cluster variability.

Conclusion:  The intra-cluster robust neighborhood CI and its corresponding width provide a valuable tool for analyzing 
binary outcome data with unequal cluster sizes. This method enhances the interpretation of observed results by 
systematically quantifying variability within clusters, allowing for more reliable intra-cluster comparisons.
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INTRODUCTION

A dichotomous (binary) variable is a categorical data type that can take exactly two possible 
values. Unequal cluster (group) sizes with binary outcomes are common in cluster 
randomized trials (CRTs) because the number of participants across clusters varies in 

scientific research. Unequal cluster (group) sizes with binary outcomes are common type of outcome 
across clusters varies in scientific research.1 This issue has been widely recognized in the literature, as 
CRTs are often used when individual randomization is impractical for logistical, ethical, or feasibility 
reasons. CRTs with small or medium cluster sizes pose a higher risk of type I errors due to inflated 
intra-cluster standard errors, which can lead to misinterpretations of treatment effects if not properly 
accounted for.2 Studies have highlighted the importance of appropriate statistical methods to address 
unequal cluster sizes and ensure accurate inference. Standard approaches that fail to adjust for intra-
cluster correlations may inflate Type I errors, leading to false-positive results. This raises concerns 
concerning interpretations, analytic approaches and methods that do not account for intra-cluster 
standard errors of effects that inflate type I errors.3,4

Addressing these challenges requires robust statistical methods that appropriately account for intra-
cluster variability in binary outcomes. Researchers have explored various strategies to mitigate these 
risks, including adjusted standard error calculations, hierarchical models, and specialized statistical 
tests that ensure more reliable interpretations of CRT findings. 

Equal sample sizes provide greater statistical power compared to unequal sample sizes. As the 
imbalance between cluster sizes increases, the statistical power decreases, making it more challenging 
to detect true effects. This occurs because unequal sample sizes lead to greater variance and reduced 
efficiency in estimating treatment effects, particularly in cluster randomized trials (CRTs) and other 
study designs involving hierarchical data structures.5

The impact of unequal cluster sizes on statistical power for binary outcomes has been extensively 
studied. Research indicates that power can be significantly affected when cluster sizes are highly 
variable, particularly in settings with large clusters and increased variability. Studies suggest that 
when intra-cluster variability exceeds 0.23, specialized design or analytical methods should be 
implemented to properly account for the imbalance in cluster sizes, ensuring accurate effect estimation 
and maintaining statistical power.6-8

However, when cluster size variability is below 0.3, adjustments are generally not necessary, as 
statistical power remains largely unaffected. In such cases, standard analytical methods can be applied 
without significant risk of inflated Type I errors or reduced power.2,8,9

Properly accounting for cluster size variation is essential to ensure accurate effect estimation and 
maintain the reliability of statistical inferences in study designs.2

The coefficient of variation (CV) of cluster size is determined by the mean cluster size and standard 



Robust Neighborhood Confidence Interval ...

Fadil Raham T et al. 

117J BIOSTAT EPIDEMIOL. VOL. 11, NO. 1, 2025

deviation, as it represents the ratio of the standard deviation of cluster sizes to the mean cluster 
size. A higher CV indicates greater variability in cluster sizes, which can impact statistical power, 
efficiency, and estimation accuracy in studies with unequal cluster sizes. Properly accounting for CV 
in study design and analysis helps ensure robust statistical inference. 

Multiple approaches for unequal cluster sizes in binary data that adjust the sample size formulae 
have been proposed. The leading models include the following: marginal, random-effects , 
conditional, response-conditional, and within-cluster resampling.10 The traditional marginal methods 
are observation-based, while within-cluster resampling is a cluster-based method that equally weights 
each cluster.10 Nevertheless, differences in cluster sizes led to variation between the statistical methods 
used in analyses in terms of power, coverage, effects estimation , and significance.11

Commonly used models based on asymptotic approximations for analyzing binary outcomes not 
accounting for various ranges of ICC, CV, number of clusters, and average cluster sizes are subjected 
to inaccurate conclusions.2

Multiple approaches adjusting the sample size formulae for unequal size clusters with binary 
outcome on design effects or relative efficiency considerations have been proposed such as the mean 
cluster size or the maximum cluster size in the simple design,2 adjusted design effect12 weighted rank 
tests that depend on the variance of cluster size.13 Kennedy-Shaffer and Hughes14 proposed analytic 
formulae for CRTs with binary outcomes through sample size calculation for the stratified vs un-
stratified designs. 

Taljaard et al. developed a sample size formulae by incorporating the missing values of the data,15 
while Hoffman et al.10 suggested using within-cluster resampling for analyzing data. 

Raham et al.16 adjust unequal cluster numbers to a predicted number equals to the maximum cluster 
number among clusters. This adjustment maintains validity as far as the risk for the outcome of 
interest is related to the cluster size. 

These methods involve trans-cluster analyses of unequal cluster sizes, furthermore, there is an 
existing overall paucity of methodological papers on binary outcomes in scientific research.2,6 There 
is a notable scarcity of published methodologies specifically addressing binary cluster analyses and 
interpretations. In scientific research, methodological studies on binary outcomes remain limited. 
Most existing approaches focus on trans-cluster analyses involving unequal cluster sizes, whereas 
methods tailored for within-cluster (intra-cluster) analysis are largely under explored. 

Variability reflexes unexplained variation, systematic error/s , and random effect/s.17 The intra-
cluster correlation coefficient (ICC) is influenced by multiple factors, including the number of 
clusters, cluster size, cluster size variability, event rate, and event rate variations. Ignoring the effects 
of unequal cluster sizes in data analysis can lead to estimation bias, inflated Type I error rates, 
and reduced statistical power and efficiency. In this context, we proposed a robust neighborhood 
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confidence interval  (RNCI) estimation method for intra-cluster confidence intervals (CIs) in binary 
data with unequal cluster sizes. By this novel method, estimations are performed to evaluate observed 
outcomes of dichotomous random variables in unequal binary cluster sizes. This method focuses on 
ensuring that the variability in cluster sizes does not bias the confidence interval estimates, making 
comparisons across clusters more reliable. 

Examining the width of the intra-cluster predicted interval as a function of the confidence level 
and variability will be a new method which provides a structured way to estimate robust confidence 
intervals (CIs) while accounting for cluster size variability in binary data with unequal cluster sizes. 

METHODOLOGY

A proposed method aim is to handles unequal cluster sizes by adjusts for variability in cluster sizes 
by computing proportion-based estimates. 

For predicting values of intra-cluster confidence intervals (CI) and widths in binary unequal sizes 
data and estimation a robust neighborhood confide interval is used to evaluate observed outcomes 
of dichotomous random variables. This approach helps to account for cluster size variability and 
ensures robust comparisons across clusters by estimating CIs that account for unequal cluster sizes. 
We proposed the following algorithmic steps: 

Step 1: Calculate the rates of the 1st and 2nd outcomes of the observed binary frequencies in each 
cluster. 

For each cluster, compute the rates of the first and second outcomes (i.e proportions) based on 
observed binary frequencies.

Step 2: Estimate significance boundaries: Sequentially estimate the minimum and maximum rates 
that achieve the desired level of significance (e.g., 0.05 for a 95% confidence level) using certain 
statistical method such as a two-sided Z-test or another test on the difference between proportions. 

	 Z-test:

Step 3: Compute count-based CI bounds: For the lower bound of the CI, multiply the minimum rate 
(from Step 2) by the total number of outcomes in the cluster. 

For the upper bound of the CI, multiply the maximum rate (from Step 2) by the total number of 
outcomes in the cluster. 
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Lower Bound (LB)=p min ×n
Upper Bound (UB)=pmax ×n 

Step 4: Construct percentage-based confidence intervals: The predicted confidence interval (CI) is 
formed by using the minimum estimate as the lower bound and the maximum estimates as the upper 
bound. This interval captures the predicted variability in proportions with the desired confidence 
level(e.g., 95%). 

Step 5: Compute the width of the CI: 
Percentage-based CI Width=UB−LB
Evaluate outcome values: Compare the predicted outcome values (from Step 4) based on the 

differences between the maximum and minimum rate values. The lower width (narrower CI) is 
considered the best or most reliable estimate. 

Step 6: Interventions are re-ranged in two-direction ranks in descending orders according to 
estimated distances independently. 

Rank the clusters independently in descending order based on the estimated distances between the 
confidence interval bounds. 

This allows for comparison across different clusters, ensuring that interventions with more reliable 
estimates (i.e., narrower CIs) receive priority. 

Step 7: Compare the observed CI widths across clusters. Identify clusters with consistently narrow 
intervals, indicating greater precision. Interventions in clusters with wider CIs may require further 
investigation or adjustments. 

APPLICATION AND RESULT

We took an example of 15 different protocols applied for a certain medical condition. The number 
of participants differs among these groups (clusters) and the data fulfill the criteria of dichotomous 
(binary) nominal data of unequal sizes.

The observed frequencies: Positive (cured), and negative (not cured) are shown in Table 1. For 
predicting values of CIs at a p-value of 0.05 we use the propose steps already mentioned in the 
methodology section. 

Using a two-sided Z-test on the difference between proportions, determine the minimum and 
maximum rate estimates that satisfy a given significance level (e.g., 0.05 for a 95% confidence 
interval).

The Z-score for a 95% CI is typically 1.96. Ensure that the estimated boundaries remain within 
valid probability ranges (0 to 1). According to this pvalue the upper and lower borders of predicted 
CI were exactly the 95% CI.
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Table 1 shows the distribution of constraint simulated data according to observed frequencies: 
positive (cured), and negative (not cured) outcomes with their predicted CI s at Pvalue = 0.05 
according to the difference between two proportions test of (two sided Z-test).

Table 1. Distribution of constrain simulated data according to observed frequencies: positive (cured), and negative (not 
cured) outcomes with their predicted CI s at P-value = 0.05 according to the difference between two proportions test of 
(two-sided Z-test)

Protocol 

Positives (cured) Negatives (not cured)
Total 

numberObserved Predicted (p-value at 0.05) Observed Predicted (p-value at 0.05)

No. % L.b: Ub: No. % L.b: Ub:
Protocol 1 21 25.93 0.1365

(11.057)
0.4040

(32.724)
60 74.07 0.5960

(48.276)
0.8635

(69.944)
81

Protocol 2 51 100 0.92724
(47.28924)

1.00
(51)

0 0.00 0(0.00) 0.07276
(3.71076)

51

Protocol 3 69 100 0.9461
(65.2809)

1.00
(69)

0 0.00 0(0.00) 0.0539
(3.7191)

69

Protocol 4 6 8.33 0.0132
(0.9504)

0.1965
(14.1480)

66 91.67 0.8831
(63.5832)

0.9868
(71.0496)

72

Protocol 5 3 9.09 0.04859
(1.60347)

0.14435
(4.76355)

30 90.91 0.85585
(28.24305)

0.9510
(31.3830)

33

Protocol 6 75 94.94 0.85695
(67.69905)

0.99885
(78.90915)

4 5.063 0.00100
(0.079)

0.1430
(11.297)

79

Protocol 7 2 0.00 0
(0.00)

0.03936
(3.77856)

96 100 0.96065
(92.2224)

1.00
(96)

96

Protocol 8 6 8.33 0.0132
(0.9504)

0.1965
(14.148)

66 91.67 0.8831
(63.5832)

0.9868
(71.0496)

72

Protocol 9 6 33.33 0.070685
(1.27233)

0.66064
(11.89152)

12 66.7 0.34014
(6.12252)

0.92925
(16.7265)

18

Protocol 10 9 75.0 0.3525
(4.2300)

0.97885
(11.7462)

3 25.0 0.02037487
(0.244498)

0.580943
(6.971316)

12

Protocol 11 36 92.3 0.7615
(29.6985)

1.00
(36.0)

3 7.69 0(0.00) 0.2385
(9.3015)

39

Protocol 12 21 87.5 0.6316
(15.1584)

1.000
(24.0)

3 12.5 0(0.00) 0.3686
(8.8464)

24

Protocol 13 9 100 0.64868
(5.83812)

1.00
(9)

0 0.00 0(0.00) 0.35132
(3.16188)

9

Protocol 14 14 100 0.7234
(8.6808)

1.00
(12)

0 0.00 0(0.00) 0.2766
(3.3192)

12

Protocol 15 0 0.00 0
(0.00)

0.35132
(3.16188)

9 1.00 0.64868
(5.83812)

1.00
(9)

9

The result is not signigicant at P=0.05. Z id 1.96 (two sided).
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Table 2 shows precision of outcome and rank according to predicted CI widths and corresponding 
observed positive results % and sample size orders. According to the constraint simulation example 
precision order rank (from narrow to wide) differs from sample order rank size in most of protocols. 
The precision order rank with a correspondence sample size order is 1 for 1st, 2 for 6th . 3 for 7th, 4 for 
9th, 5 for 3d, 6.5 for 4.5th, 8 for 8th, 9 for 2nd, 10 for 13th, 11.5 for 14.5th, 13 for 10th ,14 for 11th , and 15 
for 12th. The protocol 10 with a relatively high observed positive results (cure) results of (75%) with a 
lowest precision order in our example despite the sample size order is not the lowest. The protocol 13 
is better than protocol 10 in cure rate (100% vs 75%) despite sample size is larger in protocol 10 (12 
vs 9). This indicate the significance of CI width compared to sample size in predicting the precision 
of outcome.(table 2)

Table 3 shows the same findings for CI difference and precision for negativity results for each 
corresponding protocol. 

Table 4 shows application of this novel algorythm on a real data on antimicrobial resistance 
derived from previous study.16. Ceftriaxone, Piperacillin, and Cefepime show moderate variations 

Table 2. Re-evaluating positive (cured) outcomes according to predicted CI widths of studied protocols, corresponding observed 
positive results % and sample size orders

Protocols
Sample size 
from high to 

low 

Sample size 
order rank from 

high to low 

Predicted positives (cured) predicted (p-
value at 0.05) % observed 

positives 
(cured)

Observed posi-
tives order rank

Difference Precision order rank from 
narrow to wide

Protocol 7 96 1 0.039 1 0.00 14.5

Protocol 3 69 6 0.054 2 100 2.5

Protocol 2 51 7 0.073 3 100 2.5

Protocol 5 33 9 0.096 4 9.09 11

Protocol 6 79 3 0.142 5 94.94 5

Protocol 4 72 4.5 0.183 6.5 8.33 12.5

Protocol 8 72 4.5 0.183 6.5 8.33 6

Protocol 11 39 8 0.239 8 92.3 10

Protocol 1 81 2 0.268 9 25.93 2.5

Protocol 14 12 13 0.277 10 100 2.5

Protocol 13 9 14.5 0.351 11.5 100 14.5

Protocol 15 9 14.5 0.351 11.5 0.00 14.5

Protocol 12 24 10 0.368 13 87.5 7

Protocol 9 15 11 0.590 14 33.33 9

Protocol 10 12 12 0.626 15 75.0 8
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Table 3. Re-evaluating negative (not cured) outcomes according to predicted CI widths of studied protocols, corresponding ob-
served negative results % and orders, and sample size orders.

Protocols Sample size from 
high to low 

Sample size order 
rank from high to 

low 

Predicted negatives (not cured) predicted 
(p-value at 0.05) Observed negatives 

(not cured)%
CI difference Precision order from 

narrow to wide
Protocol 7 96 1 0.039 1 100
Protocol 3 69 6 0.054 2 0
Protocol 2 51 7 0.073 3 0
Protocol 5 33 9 0.096 4 90.91
Protocol 6 79 3 0.142 5 5.063
Protocol 4 72 4.5 0.183 6.5 91.67
Protocol 8 72 4.5 0.183 6.5 91.67
Protocol 11 39 8 0.239 8 7.69
Protocol 1 81 2 0.268 9 74.07
Protocol 14 12 13 0.277 10 0
Protocol 13 9 14.5 0.351 11.5 0
Protocol 15 9 14.5 0.351 11.5 1
Protocol 12 24 10 0.368 13 12.5
Protocol 9 18 11 0.590 14 66.7
Protocol 10 12 12 0.626 15 25

Table 3 Shows the same findings for CI difference and precision for negativity results for each corresponding protocol.

Table 4. Shows the real data related CI difference and precision for resistance of isolates results for each corresponding antibiotic

Protocol 7
Observed 
Resistance 

(No.)

Observed 
Resistance 

(%)

Total Iso-
lates

Observe d 
Resistance 
Proportion

CI
Lower
Bound

CI
Upper
Bound

CI
Width

Precision
Rank

Resistance
Rank

Ceftazidime 23 100 23 1 1 1 0 1 1

Cefotaxime 17 100 17 1 1 1 0 1 1
Tobramycin 3 100 3 1 1 1 0 1 1
Amikacin 4 100 4 1 1 1 0 1 1
Ceftriaxone 25 96.15 26.00

10400
41601
662

0.9615 0.887
54531
01023
066

1 0.112
45468
98976
9336

5 5

TMP-SMX 2 8.33 24.00
96038
41536
613

0.0833 0 0.193
83496
81925
6069

0.193
83496
81925
6069

6 12

Azithromycin 2 8.33 24.00
96038
41536
613

0.0833 0 0.193
83496
81925
6069

0.193
83496
81925
6069

6 12

Cefepime 12 92.3 13.00
10834
23618
635

0.922999
9999999

999

0.778
08527
66932

68

1 0.221
91472
33067

32

8 6
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Meropenem 1 9.09 11.00
11001
10011
002

0.0909 0 0.260
77355
81117
7205

0.260
77355
81117
7205

9 11

Tetracycline 7 25.92 27.00
61728
39506

17

0.259200
0000000

0004

0.093
93056
76659
3047

0.424
46943
23340
6964

0.330
53886
46681
392

10 10

Gentamycin 7 87.5 8 0.875 0.645
82348
50600
961

1 0.354
17651
49399
039

11 7

Piperacillin 3 75 4 0.75 0.325
64755
21456
251

1 0.674
35244
78543

75

12 8

Tazocine
(Piperacillin/
Tazobactam)

2 33.33 6.000
60006
00060

01

0.3333 0 0.710
47388
46464
989

0.710
47388
46464
989

13 9

Minocycline 0 0 0 0 0 1 1 14 14

Ciprofloxacin 0 0 0 0 0 1 1 14 14

Table 4 continues.

Protocol 7
Observed 
Resistance 

(No.)

Observed 
Resistance 

(%)

Total 
Isolates

Observe d 
Resistance 
Proportion

CI
Lower
Bound

CI
Upper
Bound

CI
Width

Precision
Rank

Resistance
Rank

between rankings.This suggests partial agreement between the two methods but some discrepancies 
in how each method defines expected resistance levels. It shows minimal or no rank differences 
with gentamycin and meropenem which had identical rankings in both methods, showing that both 
approaches agree on these antibiotics' relative resistance levels nevertheless, major rank differences 
(≥6 ranks apart) have been notice with amikacin (7 ranks apart) & tobramycin (6 ranks apart). The 
differences illustrates clearly how variability through confidence intervals can change the conclusions. 
Accounting for variability provides a statistical measure of precision via CI width. furthermore, more 
reliable ranking when achieved it minimizes uncertainty in small and different sample sizes. 

Validation

Pearson correlation analysis was conducted to evaluate the statistical agreement between the real 
data observed and predicted resistance values. 

Correlation coefficient was 0.920 (very strong positive correlation) and P-value: 0.000001 (highly 
significant) indicating that there is a strong statistical correlation between observed and predicted 
resistance values. This suggests that the introduced method successfully predicts resistance trends, as 
higher observed resistance rates correspond strongly to higher predicted resistance values. 
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Therefore, the novel method provides a statistically reliable approach to estimating and ranking 
antibiotic resistance trends. We have conducted a comparative analysis between our proposed method 
and traditional confidence interval estimation techniques, including: Standard wald Confidence 
Intervals – commonly used in clinical and epidemiological studies but does not adjust for unequal 
cluster sizes, potentially leading to biased estimates: Wilson Score Intervals – more precise in small 
samples but still does not fully address intra-cluster variability in cluster-randomized trials (CRTs): 
Bootstrap-Based Intervals – useful for handling complex data structures, yet computationally 
intensive and less efficient for practical application in large-scale studies: and Bayesian Credible 
Intervals – incorporates prior distributions for uncertainty estimation but requires subjective prior 
assumptions, which may not always be feasible in real-world clinical studies. 

The RNCI method outperformed traditional methods in accounting for intra-cluster variability by 
adapting CI width to cluster size differences, ensuring more precise ranking of interventions. 

DISCUSSION

The proposed method was developed to address the challenges posed by unequal cluster sizes 
in binary outcome data. By incorporating a statistical test and confidence interval estimation, this 
approach ensures robustness by accounting for sampling variability within each cluster. 

The width of the confidence interval is a function of the following elements: Confidence level, 
sampling error, sample size, and variability. The confidence interval measure degrees of precision 
characterizing estimated points of interest. Narrow confidence intervals bounds suggest the results 
are not subjected to a high degree of random variations. 

The number of participants enrolled across clusters in scientific research usually varies. Increasing 
the sample size is a primary way to reduce the widths of confidence intervals but this can’t be 
achieved most of the time for different reasons. 

If the width of the predicted confidence interval (CI) is narrow, the observed outcome estimate is 
more likely to be valid, particularly in the absence of systematic error. Conversely, a wider interval 
indicates a larger margin of error, meaning the true parameter value is likely to fall within a broader 
range. Such extensive ranges reflect imprecise estimates and should be interpreted with caution when 
drawing conclusions. 

The use of confidence intervals (CIs) is a powerful tool for interpreting results across various study 
designs. In clinical trials, where patients are treated different hospitals, robust CIs help prevent false 
conclusions about treatment effects. In public health research, when analyzing disease prevalence 
across regions, this approach ensures fair comparisons between geographical areas. Similarly, in 
economics and social sciences, where survey respondents may come from unequal group sizes, the 
use of robust confidence intervals helps provide unbiased policy recommendations by accounting for 
sample variability. 
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The confidence intervals will be broad when the sample standard deviation is high. The greater 
the confidence level, the wider the confidence level. The most commonly desired alpha value is p = 
0.05, 0.1, 0.01, and even 0.00118 can be used with the proposed intra-cluster predicted replace with: 
RNCI width. 

"The calculation of trans-cluster confidence intervals around the difference between two group 
means is a fundamental aspect of Schuirmann’s equivalence test.19 This statistical approach provides 
evidence for equivalence by demonstrating that two study groups can be considered statistically 
similar when their confidence intervals fall within a predefined equivalence margin. In the context 
of intra-cluster analysis, this principle supports the robustness of comparisons across clusters by 
ensuring that observed differences remain within acceptable statistical limits."20,21

The precision of outcome is related to reproducibility and repeatability, ie the degree to which 
repeated experiments or tests under unchanged conditions show the same result findings i.e. the 
predicted confidence interval.22, 23

As illustrated by constraint simulation example, orders of CI differences differ greatly from 
orders of sample sizes. The predicted robust neighborhood CI differences among protocols can’t 
be explained by the differences in sample sizes alone. This signifies that protocols with narrow 
differences reveal have lesser outcome variability. Small sized clusters can have narrow CI width 
and vise versa. Furthermore , equal sized clusters can be evaluated according to the CI width. By this 
new method, the predicted robust neighborhood CI width will be informative in interpretation the 
observed outcome values. The predicted robust neighborhood cluster outcome is highly valid if has 
no systematic error (high accuracy) and has lesser variability (narrow predicted confidence interval). 

Our RNCI method compare how much outliers or distribution of outcomes affect conclusions.The 
application of RNCI will help to get precise conclusions and recommendations concerning binary 
data of unequal cluster sizes. Results showed that small sized sample can possibly have narrow CI 
width and vice versa. For this reason this application has a place in analyzing data with unequal 
clusters in various fields including health-related fields, such as medicine, pharmacology, biology, 
public health and etc. 

Compared to other neighborhood-based methods, our approach estimates a more robust confidence 
interval (CI) that precisely achieves the desired significance level by applying the difference between 
two proportions test. Unlike standard methods, which may not fully account for intra-cluster variability, 
our approach ensures statistical robustness by explicitly incorporating cluster size differences.

Other statistical techniques, such as the clustered bootstrap method, resample entire clusters rather 
than individual data points, preserving the intra-cluster structure. Sandwich estimators provide robust 
standard errors that adjust for heteroscedasticity and intra-cluster correlations, improving variance 
estimation. Additionally, Huber and Tukey loss functions offer a way to mitigate the impact of within-
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cluster outliers by down-weighting large residuals during model estimation. While these methods 
enhance robustness in different contexts, our proposed approach directly focuses on accurately 
estimating intra-cluster confidence intervals with minimal bias. 

Upon reviewing the literature, we have identified the following studies that, while not identical, 
share some similarities with this current research: 

1-	 Comparison of Confidence Interval Methods for the Intraclass Correlation Coefficient in 
Cluster Randomized Trials with Binary Outcomes24: This study evaluates various confidence 
interval methods applied to binary outcomes in community intervention trials, focusing on the 
intraclass correlation coefficient (ICC).
2-	 New Improved Estimators for Overdispersion in Models with Clustered Multinomial Data 
and Unequal Cluster Sizes25: This research proposes new estimators addressing overdispersion in 
clustered multinomial data, specifically considering unequal cluster sizes. 
3-	 ICCbin: Facilitates Clustered Binary Data Generation and Estimation of Intracluster 
Correlation Coefficient (ICC) for Binary Data26: This R package assists in generating clustered 
binary data and provides estimates of the ICC using various methods, including confidence interval 
estimation. 
These studies offer methodologies and discussions that are relevant the analysis of clustered binary 

data with unequal cluster sizes but not the unique contribution and advantage of our method. 

Strengths of the Algorith

The novel algorithm presents several advantages in statistical analysis, particularly in its ability 
to handle binary outcomes within unequal cluster sizes. A key strength is its ability to enhance 
comparability, allowing meaningful comparisons across clusters by ranking interventions based on 
confidence interval (CI) widths. This ranking system provides a clearer interpretation of intra-cluster 
variability, ensuring that interventions with more precise estimates are prioritized over those with 
greater uncertainty. Additionally, the algorithm strengthens decision-making by identifying clusters 
with the most reliable estimates, facilitating a data-driven approach to intervention prioritization. 
This ensures that conclusions are based on statistically sound assessments, reducing the risk of 
misinterpretation due to cluster size variability. 

A major advantage of this approach is its strong statistical foundation. The algorithm utilizes 
standard statistical methods to compare proportions across different groups while incorporating 
confidence intervals to provide a range of likely outcomes rather than a single estimate. By ensuring 
that treatment effectiveness is interpreted within a confidence range, the method enhances reliability 
and precision. The systematic ranking of interventions based on CI width prioritizes more stable 
and consistent estimates, minimizing errors caused by variations in observed data. Notably, step 6 
allows for a structured comparison of interventions, integrating both effectiveness and certainty—an 
essential feature in clinical decision-making. 

Unlike many traditional statistical approaches that stop at confidence intervals or hypothesis testing, 
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this method extends beyond conventional analysis by refining confidence intervals and using them as 
a ranking criterion for systematic intervention comparison. While most ranking methods in clinical 
research rely on effect sizes such as odds ratios, hazard ratios, or mean differences, this algorithm 
introduces a novel approach by prioritizing interventions based on CI width. This innovation is 
particularly useful in studies involving multiple interventions, where ensuring the most statistically 
reliable estimates is essential.  

Another key strength of the algorithm is its flexibility in statistical methods, allowing researchers 
to apply various analytical approaches depending on study design and data characteristics. It 
accommodates techniques such as the Z-test, which is suitable for large sample sizes, and the T-test, 
which is ideal for small sample sizes with unknown variance. The Chi-square test can also be used 
for categorical data analysis, while the bootstrap method provides a non-parametric alternative for 
estimating confidence intervals without strict distributional assumptions. Additionally, Bayesian 
methods can be employed to update prior knowledge, improving inference in limited sample sizes or 
highly variable datasets. More advanced techniques, such as generalized estimating equations (GEE) 
or mixed-effects models, enhance estimation accuracy by accounting for intra-cluster correlations. 

The algorithm also addresses the challenge of wide confidence intervals, which can impact result 
interpretation and decision-making. Adjustments can be made to improve precision, such as increasing 
sample sizes, applying hierarchical models, or using variance-stabilizing techniques to narrow CI 
widths. By incorporating these adjustments, the algorithm ensures that confidence intervals more 
accurately reflect the underlying data structure, strengthening the reliability of statistical estimates 
and improving decision-making in epidemiology, clinical research, and public health studies. 

This novel algorithm represents a significant advancement in statistical methodologies, integrating 
a robust ranking mechanism with flexible statistical modeling options. Its ability to account for 
intra-cluster variability, refine confidence intervals, and prioritize interventions based on CI width 
makes it a powerful tool for analyzing binary outcome data with unequal cluster sizes. The flexibility 
in statistical methodology enhances the robustness of the algorithm, making it applicable across 
various data distributions, cluster sizes, and outcome types. By allowing researchers to select 
the most appropriate statistical method, the algorithm ensures accurate intra-cluster confidence 
interval estimation, facilitating reliable comparisons and data-driven decision-making in clinical, 
epidemiological, and public health research. 

This adaptability further enhances the precision of results, ensuring that confidence intervals more 
accurately represent the true variability in the data and improving overall decision-making reliability.

Limitations of the Algorithm 

 While the predicted RNCI method enhances the interpretation of findings in studies with binary 
outcomes and unequal cluster sizes, it has certain limitations. One of the key challenges is that the 
predicted CI contains the most compatible values, but it does not directly describe the probability of 
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including the true parameter value.17 Confidence intervals are designed to provide a plausible values, 
but each interval either includes or excludes the true value, with the probability of any given interval 
being either 0 or 1.27 This inherent characteristic means that interpretation of uncertainty should be 
done with caution, particularly in studies with small sample sizes. 

Another limitation lies in the fact that CI width alone may not fully capture reliability. While a 
narrower CI width generally indicates higher precision, it does not always guarantee greater accuracy. 
Small sample sizes, for instance, may lead to artificially narrow CIs, which increases the risk of 
overconfidence in the estimates. Additionally, the method does not explicitly adjust for sample size 
variability, meaning that protocols with smaller sample sizes may appear more precise but still suffer 
from statistical uncertainty. Future improvements could incorporate Bayesian approaches or adjusted 
confidence intervals, such as the Wilson score interval, to enhance reliability in small sample settings. 

The algorithm also assumes that observed differences between interventions are purely due to 
the protocols themselves, without accounting for potential confounding factors. In real-world 
applications, various factors—such as differences in patient characteristics, healthcare settings, or 
external influences—could contribute to observed variations. The current method does not integrate 
covariate adjustments or hierarchical modeling, which could improve the accuracy of comparisons 
by controlling for study-specific biases.

While prioritizing interventions based on confidence interval width is an innovative approach, 
integrating multiple ranking criteria—such as combining  CI width with effect sizes—could enhance 
the method’s robustness in clinical decision-making. 

Lastly, while the algorithm effectively handles binary outcome data, its application to multi-category 
or continuous outcomes remains unexplored. Despite these limitations, the RNCI method presents 
a novel and statistically rigorous approach for handling unequal cluster sizes in binary outcome 
studies. However, additional research is needed to validate its application in different study settings, 
particularly for small sample sizes, confounding factor adjustments, and multi-variable outcome 
modeling. 

Future Consideration

Further validation studies are necessary to evaluate the consistency and reliability of this approach 
across diverse datasets and real-world applications. Future developments may incorporate Bayesian 
methods, hybrid ranking strategies, or machine-learning-driven refinements to enhance the precision 
and interpretability of confidence intervals, particularly in clinical and epidemiological research. 
Additionally, expanding the method to accommodate continuous data distributions or integrating it 
with hierarchical models, such as generalized estimating equations (GEE) or mixed-effects models, 
could improve its adaptability in more complex study designs and multivariable analyses. 
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CONCLUSION

The results from the constrained simulation example underscore the importance of CI width over 
sample size alone in evaluating the precision of observed outcomes. The re-evaluated ranking orders 
indicate that certain protocols with a high observed positive outcome received a lower precision 
ranking than expected, despite having a larger sample size. Conversely, a protocol with a smaller 
sample size ranked higher in precision. This demonstrates that CI width serves as a more reliable 
measure of precision compared to sample size alone, reinforcing the significance of this approach in 
ranking and evaluating interventions. 

Furthermore, the real-world antimicrobial resistance example data analysis highlights the 
applicability of this method in evaluating resistance trends among bacterial isolates. The comparison 
between observed and predicted resistance rankings revealed significant discrepancies in certain 
antibiotics, where the ranking based on observed resistance did not align with the predicted CI with 
based ranking. This indicates that CI width could provide a more precise measure of reliability than 
direct resistance proportions emphasizing how CI width can refine interpretations of resistance data 
by accounting for statistical uncertainty. 

These findings confirm that CI width is a crucial factor in determining the reliability of observed 
outcomes, whether in clinical interventions or bacterial resistance assessments. This reinforces the 
need for a ranking system that prioritizes precision over raw proportions, ensuring that statistical 
analyses yield more reliable conclusions. By applying this methodology to antimicrobial resistance 
studies for example , researchers can gain a better understanding of resistance patterns and improve 
the accuracy of intervention assessments in infectious disease research.

Recommendations

The intra-cluster predicted robust neighborhood confidence interval (CI) and its corresponding 
width represent a novel analytical tool for handling binary outcome data with unequal cluster 
sizes. This method provides a statistically rigorous approach to assessing intra-cluster variability, 
ensuring more reliable and precise comparisons in cluster-based analyses. Future research should 
focus on expanding its applicability to various study designs, refining its statistical framework, and 
incorporating adjustments for small-sample effects to further enhance its accuracy and interpretability 
in real-world research settings.
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