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Introduction: Brain tumors are among the most fatal cancers and cause the deaths of many people annually. Early diagnosis 
of a brain tumor can help save the patient’s life.

Methods: We have collected a dataset consisting of 314 brain MRI images in all planes taken after administering a contrast 
medium with the dimension of 800*512, which offers the highest resolution. First, skull stripping has been implemented to 
separate the brain from other parts in the images. Next, we have annotated the tumors in the images under the supervision 
of experienced radiologists to create ground truth. To determine the most effective model versions for all three loss 
functions, hyperparameter tuning was performed. Following the comparison, the study further evaluates the effectiveness 
of two loss functions, Binary Cross-Entropy (BCE) and Focal loss, specifically in handling tumor regions within the dataset.

Results: The two proposed loss functions were evaluated using 5-fold cross-validation, and the average precision, recall, 
and F1-score were 76.16%, 71.9%, and 74.52 for BCE loss and 82.92%, 79.32%, and 81% for the Focal loss on the test data, 
respectively. Moreover, the accuracy for BCE loss was 99.03% and 99.44% for the Focal loss. 

Conclusion: We recommend using BCE loss cautiously in classification tasks without data imbalance and emphasize the 
adoption of Focal loss for more accurate and reliable results in brain tumor segmentation.
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INTRODUCTION

Brain tumors are among the most lethal cancers, causing the deaths of a significant number of 
people annually. According to the 2018 Cancer Registry results, over 18 million registered 
cases of cancer in both sexes, of which approximately 300,000 were related to brain cancers. 

Additionally, there were more than 9 million deaths attributable to global cancers in 2018, of which 
more than 240,000 (2.71%) were due to brain cancers.1 An estimated 16,830 deaths were attributed 
to primary malignant brain tumors in the US in 2018. According to a study from 2011 to 2015, in 
the US, the 5-year and 10-year relative survival rates of patients with malignant tumors were 35.0% 
and 29.3%, respectively. Based on this study, brain and other central nervous system tumors (both 
malignant and non-malignant) had an average annual age-adjusted incidence of 11.20 per 100,000 
people aged 15–39 years. Also, these tumors were the second most common cancer in males in this 
age group and the third most common cancer in females in this age group.2

Magnetic resonance imaging (MRI) is the primary scanning tool for detecting and diagnosing 
tumors, as it offers excellent contrast for soft tissues. In general, MRI serves three main functions in 
the workup of intra-axial tumors: tumor diagnosis and classification, treatment planning, and post-
treatment management.3,4 MRI images, based on this, play a crucial role in discovering tumors and 
potentially saving the lives of patients. It is worth mentioning that before the scan, a contrast medium, 
known as a dye, is administered to enhance the image’s precision.

Image segmentation entails dividing a digital image into distinct segments, each representing 
a specific visual characteristic. More precisely, it involves labeling individual pixels in the image, 
where pixels sharing the same label possess similar visual attributes. This technique is widely used 
for object and edge detection within images5 Brain tumor image segmentation is a crucial process 
performed by experts to distinguish distinct regions within a brain image, enabling the identification 
and differentiation of tumors from normal brain structures. This precise segmentation plays a vital role 
in treatment planning within the medical field. Locating tumors is an arduous task, heavily reliant on 
the experience, skills, and meticulous decisions of physicians, who analyze each slice of the image. 
Timely detection of cancerous tumors significantly enhances a patient’s chances of recovery and 
survival following treatment. Nevertheless, this intricate task demands a substantial time investment 
from qualified experts to accurately segment brain tumors.6 Furthermore, the precise location of 
tumors often involves some level of uncertainty. Gliomas, which are primary brain tumors, arise from 
glial cells that support nerve cells. Due to the extensive spatial distribution of glial cells, both High-
Grade Gliomas (HGG) and Low-Grade Gliomas (LGG) can manifest at various locations throughout 
the brain.7

In addition, this process is prone to be influenced by individual opinions and if the person delineating 
the region of tumor is not a well-trained technologist, it will usually yield poor segmentation results.6, 7

Historically, brain tumor segmentation has evolved from manual methods to more sophisticated 
computational approaches. Early methods in the late 1990s and early 2000s relied on traditional 
machine learning algorithms with hand-crafted features. These included expert systems using multi-
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spectral histograms, segmentation using templates, graphical models with intensity histograms, 
and tumor boundary detection from latent atlases.8,9 These early techniques primarily focused on 
segmenting the whole tumor region, often under strong and unrealistic assumptions. Additionally, the 
manually designed feature engineering was limited by prior knowledge and could not be generalized 
effectively. These early methods also struggled with challenges such as appearance uncertainty and 
data imbalance.

With the advent of deep learning, researchers shifted towards using deep neural networks (DNNs) 
to address the challenges in brain tumor segmentation.10,11 Pioneering work involved customizing 
deep convolutional neural networks (DCNNs) for accurate tumor segmentation. Breakthroughs like 
the Fully Convolutional Network (FCN)12 and U-Net13 led to innovations focusing on building fully 
convolutional encoder-decoder networks, enabling end-to-end tumor segmentation. 

With automatic learning, capturing global context, scalability, and adaptability through fine-tuning 
Convolutional Neural Networks (CNNs) achieve superior performance in various segmentation tasks 
due to their ability to learn robust features and generalize well on diverse datasets, making them a powerful 
and widely used approach for image segmentation in modern computer vision applications.14,15 U-Net 
is a highly effective CNN architecture known for its skip connections, U-shaped design captures both 
local and global information, enabling strong performance in biomedical segmentation. its efficiency 
in segmenting medical images stems from its encoder-decoder structure, which allows for precise 
localization and context understanding. The model has become a cornerstone in the field, leading to 
numerous extensions such as UNet++ and Attention-UNet, which build upon its foundation to improve 
performance. In diffusion models, U-Nets play a critical role by adapting across various time steps 
to iteratively reconstruct original data from noise-introduced training data, enhancing the generative 
capabilities of these models.13,16,17 Despite significant advancements in improving the performance 
of segmentation tasks, the optimal setup of hyperparameters for training the best model for this task 
remains an open question. Additionally, few studies have focused on identifying the most effective 
loss function for brain tumor segmentation. Isensee et al.18 demonstrated that enhancing segmentation 
performance involves more than just adjusting the architecture; factors such as the choice of loss 
function, training strategy, and post-processing also play critical roles.

Contribution of the study

We collected a high-resolution dataset of brain MRI images with contrast medium, enhancing clarity 
and ensuring diverse tumor variations for improved model training. In collaboration with radiology 
experts, we selected high-quality images with appropriate dimensions in all planes. Skull stripping 
was performed on each image for increased accuracy.

Our study highlights the importance of evaluation metrics like the Dice coefficient and Hausdorff 
distance, which enhance segmentation accuracy and tumor localization. We conducted a thorough 
comparison of these metrics to identify the most effective one for improving segmentation performance 
in brain tumor segmentation task which less attention paid into.
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Additionally, we explored various loss functions (e.g., Dice loss, Cross-Entropy loss, Tversky loss) 
to guide model training and improving tumor boundary identification. Our analysis provides insights 
into selecting the most suitable loss function and contributes to the advancement of medical image 
analysis. Ultimately, our work sets a new benchmark for brain tumor detection using U-Net and 
informs future research in the field.

METHODS

In this study, we conducted a comprehensive literature review on key loss functions in the 
segmentation task, including Tversky Loss, Dice Loss, and Focal Loss, which are commonly utilized 
in image segmentation with U-Net. Our focus was on comparing the efficacy of the Binary Cross-
Entropy (BCE) loss function and Focal Loss, particularly when dealing with the tumor region of 
interest (ROI) in our dataset. To determine the most effective model versions for all three loss functions, 
we performed hyperparameter tuning using Ray Tune.19 During this process, we also examined how 
the number of epochs influenced the maximum IoU score of our models. Our aim was to identify 
which loss function yielded the best results for this specific task. Our findings indicated that BCE loss 
and Focal loss outperformed the other loss functions, further emphasizing their importance in image 
segmentation tasks, particularly when dealing with the tumor region.

For our hyperparameter tuning process, we focused on optimizing the number of epochs and the 
alpha values associated with loss functions. This process is crucial in machine learning and deep 
learning models, as it involves selecting the best set of hyperparameters for a given algorithm to 
achieve optimal performance on a specific task. The alpha parameter in loss functions controls the 
balance between false positives and false negatives. Additionally, the number of epochs represents the 
number of times the model passes through the entire training dataset. It can significantly influence the 
training process, affecting both underfitting and overfitting. By adjusting the number of epochs, we 
can find the optimal training duration that balances model performance.

During hyperparameter tuning for BCE loss, we focused on adjusting the learning rate, weight decay, 
and batch size, as BCE loss does not have an alpha parameter like Tversky Loss or Focal Loss.

Table 1 provides an overview of the hyperparameter values tested for each loss function. The 
hyperparameter tuning process was conducted separately for each of the three loss functions. This 
systematic approach allowed us to identify the optimal hyperparameters for each loss function, leading 
to more effective segmentation models.

After hyperparameter tuning, we utilized the optimal hyperparameters to retrain the models from the 
ground up. For Focal Loss, the best combination, with an alpha value of 0.6, was trained for 20 epochs 
using the validation data, resulting in a promising Dice coefficient of 81%. On the other hand, the top-
performing BCE loss model was also trained for 20 epochs, yielding an impressive F1 score of 75%. 
Accordingly, we used these different loss functions in the standard U-Net model to assess their overall 
performance in the semantic segmentation of brain tumors.
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Table 1. hyperparameter values explored for each loss function
Loss function Hyperparameters Measures
Dice loss #Epochs 5, 10,15,20,25,30
Tversky loss #Epochs 

alpha
5, 10,15,20,25,30
0.5,0.6,0.7,0.8,0.9

Focal loss #Epochs
alpha

5,10,15,20,25,30
0.5,0.6,0.7,0.8,0.9

Binary Cross-Entropy loss function (BCE)

Cross-entropy is a measure of the discrepancy between two probability distributions. The performance 
of a semantic segmentation model is evaluated using cross-entropy loss. The probability output value 
of the cross-entropy loss function ranges between 0 and 1. This value increases when the predicted 
probability of a pixel in the image belonging to the actual class is higher. This process can be viewed 
as a classification algorithm. Binary cross-entropy is a specific form of cross-entropy, where the target 
of the prediction is either 1 or 0.

Cross-entropy is the default loss function used for image segmentation, as it is mathematically 
related to accuracy.20 In the equation below, we have provided the Log loss formula. The term p In this 
formula is the probability of class 1, and (1- p) is the probability of class 0. When a pixel belongs to 
class 1, the first piece of the formula becomes involved, and if the pixel belongs to class 0, the second 
part of the equation becomes active. Through this process, we can calculate the Binary cross-entropy.21

Focal Loss

The Focal Loss function is designed to address the class imbalance problem that often occurs 
in binary classification tasks.22 In medical image segmentation, dealing with imbalanced data is a 
common challenge. This occurs when one class, typically the “negative” class, dominates the dataset, 
leading to biased training and suboptimal performance. To address this issue, the Focal Loss function 
is used, selectively reducing the loss for well-classified examples while prioritizing hard-to-classify 
and misclassified examples. By focusing on these difficult samples, Focal Loss helps improve the 
overall performance of the model.

To address the class imbalance problem, we can incorporate weights into the cross-entropy loss 
formula. These weights are assigned to hard-to-classify examples, specifically false negatives, while 
correctly classified examples are referred to as true negatives. By introducing these weight adjustments, 
the model can better handle imbalanced data, allowing it to focus on challenging cases and improving 
its performance in medical image segmentation tasks.
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Dataset

The training data is a set of 314 MRI images (800 x 512 pixels) from the brains of 108 patients 
diagnosed by expert with a brain tumor and went to the imaging center between 10 Jan 2021 to 13 Feb 
2022. These MRI images were taken with and without contrast to obtain the highest resolution images 
and obtained with multiplanar and in different sequences with GE 1.5 tesla machine. These images 
are in sagittal, axial, and coronal planes and the average age of the patient in the study is 43 years old.

In this study, each image is accompanied by a fully annotated ground truth segmentation map, which 
precisely identifies the tumor’s location in a separate image with similar dimensions. To enhance the 
accuracy of the segmentation task, the images underwent several preprocessing stages including skull 
stripping and annotation and labeling. Figure 1 displays a collection of examples used in the study, 
showcasing the original images, their corresponding annotations, and the resulting output masks.

We analyzed brain tumor images to quantify the tumor-to-brain area ratio and classify tumors as 
either High-Grade Glioma (HGG) or Low-Grade Glioma (LGG). To enhance image quality, we 
applied Gaussian blurring for noise reduction, followed by segmentation of brain and tumor regions 
using Otsu's thresholding and binary thresholding, respectively (Figure 1). The mean ratio of tumor 
regions to non-tumor areas in the images is 0.22, with a median of 0.19, indicating a class imbalance 
between the two regions. 

Figure 1. U-Net structure with 4 encoding and 4 decoding blocks

Skull Stripping

Skull stripping, also known as brain extraction or brain masking, is a critical preprocessing step in 
the analysis of MRI data. The purpose of skull stripping is to remove non-brain tissues from the MRI 
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Figure 2. Five cases from the dataset show the annotating of the tumor area and the final Mask or 21 ground truth. The 
model will use these masks to detect the tumor region. Radiology experts have done these annotations.
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images, such as the skull, scalp, and other surrounding tissues, leaving only the brain region for further 
analysis. This step is crucial for various neuroimaging applications, including brain segmentation, 
volumetric analysis, cortical thickness measurement, and functional connectivity studies, among 
others. Simply, the process of skull stripping will isolate the brain tissue from non-brain tissue in an 
MRI image.23 We used region-based binary mask extraction for this task. Figure 3 demonstrates the 
transformation of a raw MRI image into a suitable format for the segmentation task, achieved through 
the skull stripping process.

Figure 3. An example of a raw MRI image transformed into a suitable image for segmentation task through the skull 
stripping process.

Evaluation metrics

To comprehensively assess the performance of our semantic segmentation task, it is crucial to define 
the following metrics: True Negatives (TN), True Positives (TP), False Negatives (FN), and False 
Positives (FP). These definitions lay the foundation for the evaluation metrics that we will subsequently 
introduce.

•	 True Positive (TP): The model correctly identifies the tumoral pixel.
•	 False Positive (FP): The model incorrectly identifies a pixel as tumoral.
•	 False Negative (FN): The model incorrectly identified the pixel as non-tumoral.
•	 True Negative (TN): The model correctly identified a normal pixel as non-tumoral.

Dice Coefficient (F1 Score): The Dice coefficient, also known as the Sørensen–Dice coefficient, 
is a similarity metric used to compare the similarity or overlap between two sets. In the context of 
image segmentation and medical image analysis, it is often used to evaluate the performance of image 
segmentation algorithms by measuring the agreement between the segmented image and the ground 
truth (manually annotated) image.24 Basically, we can also say Dice coefficient measures the similarity 
between predicted pixels and ground truth and ranges from zero to one. Let TP, FP, and FN be variables 
representing true positives, false positives, and false negatives, respectively.

The Dice coefficient is defined as follows:
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where:
•	 A is the first set (e.g., the pixels of the segmented image).
•	 B is the second set (e.g., the pixels of the ground truth image).
•	 |A ∩ B| is the cardinality of the intersection of A and B (the number of pixels that are correctly 

classified).
•	 |A| is the cardinality of set A (the total number of pixels in the segmented image).
•	 |B| is the cardinality of set B (the total number of pixels in the ground truth image). 
• The Dice coefficient ranges from 0 to 1, with 0 indicating no overlap between the sets (completely 

dissimilar) and 1 indicating perfect overlap (complete similarity).

Precision

Precision is a performance metric used to evaluate the accuracy of a segmentation algorithm. 
Precision measures the proportion of the correctly classified pixels for a particular class among all the 
pixels that the algorithm has classified as belonging to that class. We can define it as the proportion of 
pixels in our segmentation model that correspond to pixels in the ground truth.25

Recall (Sensitivity)

Is a performance metric used to evaluate the completeness of a segmentation algorithm. Recall 
measures the proportion of correctly classified pixels for a particular class among all the pixels that 
belong to that class in the ground truth (manually annotated) image. To be more accurate: Recall 
measures the ratio of pixels in the ground truth that were successfully detected by our segmentation 
model26

Accuracy

The easiest way to understand the percent of pixels in the image that are segmented correctly is 
accuracy. Because most of the pixels in an MRI image are background and the region of interest or 
tumor includes a small area of the image, accuracy is often high in brain tumor segmentation tasks and 
is not an interested metric The best accuracy is 1.0, whereas the worst is 0.0.

RESULTS

We conducted two separate training sessions for our U-net model using high-resolution brain MRI 
images. In the first session, we utilized the BCE loss, while in the second session, we employed the 
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Focal loss. The implementation of the model was carried out in Python using Spyder 5.0.1. To leverage 
powerful machine learning capabilities, we trained the model on the Cloud Tensor Processing Unit 
(TPU) available in the Google Colab environment, specifically designed for accelerating machine 
learning tasks. Throughout the training process, we relied on Keras and TensorFlow versions 2.8.0. 
Lastly, to assess the performance of our model, we implemented a fivefold cross-validation technique 
and the obtained results are presented in Table 2.

Table 2. Full model output in terms of all evaluation metrics separately for BCE loss and Focal Loss
Loss    K-folds Accuracy F1(Dice Coefficient) Precision Sensitivity (Recall) Specificity

Focal Loss
Fold-1 98.98 % 78 % 88.5  % 62.3 % 99 %
Fold-2 99.87 % 81.1 % 86.1 % 79.7 % 99.1 %
Fold-3 99.21 % 79.8 % 77.6 % 89.7 % 99.7 %
Fold-4 99.84 % 79.4 % 81.3 % 75.6 %  99.2 %
Fold-5 99.33 % 86.7 % 81.1 % 89.3 % 99.4 %
5-Fold Mean 99.44 % 81 % 82.92 % 79.32 % 99.2 %

Blnary Cross Entropy Loss
Fold-1 99.32 % 72.3 % 74.2 % 68.3 % 98.3 %
Fold-2 98.6 % 77.8 % 76.1 % 78.5 % 98.8 %
Fold-3 98.63 % 63.5 % 78.5 % 74.3 % 99.2 %
Fold-4 99.15 % 76 % 87.4 % 63.9 % 99.6 %
Fold-5 99.45 % 83 % 64.6 % 74.5 % 98.7 %
5-Fold Mean 99.03 % 74.52 % 76.16 % 71.9 % 98.9 %

Figure 4 presents performance comparison charts for the BCE loss and Focal loss using essential 
evaluation metrics, Precision, F1 score, and Recall, in the segmentation task. It is evident that the 
Focal loss outperforms the BCE loss, showing improvements of 6.4% in Dice coefficient, 6.76% in 
Precision, and 7.42% in Recall.

In Figure 5, we demonstrate model prediction results for tumor detection on random MRI images. 
In the first row, the raw brain MRI image with the tumor is displayed, while the second row shows the 
corresponding annotation map or mask. The model assigns a probability value to each pixel, indicating 
the likelihood of a tumor’s presence or absence. These probabilities range from zero to one, with 
higher values representing brighter points in the images displayed in the last row. The final prediction 
of the model for tumor localization is depicted in the third row.

To create this prediction, the model applies a threshold of 0.5 to the probabilities. Pixels with 
probabilities greater than 0.5 are set to one, representing tumors, while pixels with probabilities lower 
than 0.5 are set to zero, indicating the absence of tumors. The pixels with a probability equal to one are 
identified as tumors and are plotted accordingly as our final prediction.
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Figure 4. The performance comparison results of the BCE loss and Focal loss in terms of Precision, F1 score and Recall.

Fig 5
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Fig 5
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Fig 5

Figure 5. Six cases of the dataset showing the A) Image, B) Corresponding ground truth, C)Final prediction of tumor done by 
model, and D) Each pixel’s probability of being tumor.
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Hausdorff distance

 As the ultimate evaluation criterion, we computed the Hausdorff distance for the image segmentation 
task, specifically focusing on the performance of the focal loss, which we selected as our best-
performing loss function. Hausdorff distance plays a crucial role in image segmentation by providing 
a quantitative measure of the similarity between the segmented regions produced by an algorithm and 
the ground truth or reference boundaries. It is an important evaluation metric that helps assess the 
accuracy and quality of the segmentation results. The best range for the Hausdorff distance depends on 
various factors, such as the resolution and scale of the images, the complexity of the segmented regions, 
and the specific application of the segmentation. Generally, a lower Hausdorff distance indicates better 
accuracy and similarity between the segmented boundaries and the ground truth boundaries. However, 
the acceptable range can vary depending on the specific task and the domain27,28 Table 3 displays the 
results of the Hausdorff distance values obtained for each fold using the Focal loss function.

Table 3. The Hausdorff distance values obtained for each fold using the Focal loss function.
K-folds in Focal Loss Hausdorff Distance (mm)

Fold 1 46.42811
Fold 2 42.54174
Fold 3 52.68178
Fold 4 50.63595
Fold 5 48.08201

%95 CI = (43.22mm,52.92mm)

DISCUSSION

In this study, we intended to evaluate an essential factor in the process of automated brain tumor 
segmentation, which is loss function. We compared two widely used loss functions using evaluation 
metrics relevant to segmentation tasks, and we realized that Focal loss is performing significantly 
better. The acceptable performance of focal loss compared to BCE loss maybe because of its better 
encounter with imbalanced data. The loss function is a dynamically moderated version of cross entropy 
loss, where the scaling factor tends to zero as confidence in the correct class increases. Intuitively, 
this scaling factor can automatically down-weight the contribution of easy examples during training 
and rapidly focus the model on hard examples. It is important to note that examples (pixels) that are 
consistently well-classified at the early training stage are easy examples and examples (pixels) that 
are misclassified are hard examples.29 Moreover, in terms of network structure, we found that U-net 
performs best among others in segmentation tasks, and changing any hyper-parameter or model would 
decrease the precision and recall. Hence, we used standard U-net architecture with four encoding and 
four decoding paths and different loss functions.

Inspired by the concept of focal loss, Ken C. L. et al.30 have presented an exponential, logarithmic loss 
that balances the labels by their relative sizes and their segmentation difficulties. They have improved 
the dice coefficient due to using logarithmic Dice loss. However, the resolution of the images they 
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used was less than ours. Also, instead of data augmentation, we used a more diverse dataset to train 
the model, which can directly affect the generalization of the model.

Training a U-net on MRI images is typically not a very computationally intensive task, yet it often 
yields highly promising results. On the other hand, Ullah et al.31 introduced a patch-based convolutional 
neural network (PBCNN) approach for accurate brain tumor segmentation from MRI scans. The 
authors utilize the BraTS datasets from 2012 to 2018, preprocessing the data with techniques like 
Gaussian filtering and intensity normalization. The images are divided into smaller patches to improve 
computational efficiency and allow the model to focus on local features. Their proposed PBCNN 
architecture outperforms existing state-of-the-art methods, achieving a Dice coefficient of 0.91 and 
an accuracy of 0.96. The study emphasizes the importance of big data analysis in medical imaging 
and highlights the potential of PBCNN models for improving brain tumor diagnosis and treatment. 
One weakness of the paper is the computational cost associated with training the proposed PBCNN 
model. This suggests that the method may not be feasible for researchers or clinicians without access 
to significant computing resources.

One limitation of this study is its reliance on single-center data, which could introduce potential 
demographic biases (e.g., age, ethnicity) and scanner-specific artifacts in longitudinal studies due to 
the use of uniform imaging protocols and equipment. Since the dataset is sourced exclusively from 
one imaging center, it may not fully capture patient populations diversity or genetic diversity that 
typically seen in real-world clinical settings. However, for the segmentation task in this study, this 
limitation is less concerning as we are primarily focused on computational accuracy. Longitudinal 
studies, however, may not be fully applicable to this dataset.

Additionally, there is room for exploring variations of the standard U-Net architecture, such as 
U-Net++32 or Attention U-Net33, which incorporate features like nested skip connections or attention 
gates to improve feature extraction and boundary precision. 

Daobin Huang et al.34 in 2021 have used a hybrid loss for brain tumor segmentation to optimize their 
proposed network for the class imbalance problem. They offered two hybrid loss functions comprising 
contributions from different losses, including recall loss, combined Dice loss, and cross-entropy loss, 
which has improved their DSC value. Accordingly, their model achieved Dice scores of 85.

Mohseni Salehi et al.35 propose a generalized loss function to deal with unbalanced data. Their loss 
function is based on the Tversky index to handle the issue of data imbalance and achieve a much 
better trade-off between precision and recall. Their results in multiple sclerosis lesion segmentation on 
magnetic resonance images show improved F2 score and Dice coefficient.

The automated and semi-automated methods that have progressed through recent years can 
be classified into two groups: Generative and discriminative. Generative methods model the joint 
probability distribution of the image and its corresponding segmentation labels. In other words, they 
try to learn the statistical relationship between the input image and the output segmentation labels.36,37 
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On the other hand, Discriminative methods, focus on modeling the conditional probability distribution 
of the segmentation labels given the input image. Instead of trying to model the entire joint distribution, 
they directly learn the decision boundary between different segments based on the input features. 
Popular discriminative models for image segmentation include Support Vector Machines (SVMs), 
Random Forests, and Deep Learning-based models like Convolutional Neural Networks (CNNs). 
Moreover, CNNs for brain tumor segmentation can hardly be grouped into single-label prediction 
and dense prediction architectures. Single label prediction architectures take preprocessed patches 
as input and predict the label of the central pixel in the patch.38 To bring an example, Pereira et al.39  
proposed a 2D convolutional neural network that creates a single-label prediction and fulfills the best 
performance in the BRATS 2015 challenge. In addition, a two-phase training scheme was proposed to 
deal with the class imbalance problem. Since only the label of the central voxel is predicted each time, 
the single-label prediction networks are very slow during the inference phase.11

CONCLUSION

In conclusion, the findings of this study demonstrate the superiority of Focal loss over BCE loss 
in the context of brain tumor auto-segmentation tasks utilizing CNN and U-net architecture. The 
remarkable improvements observed in precision, F1 score, Recall, and accuracy clearly indicate that 
Focal loss is an optimal choice for addressing imbalanced data in segmentation tasks, particularly in 
the challenging domain of brain tumor segmentation. Therefore, we strongly advocate for the cautious 
use of BCE loss solely in classification tasks without data imbalance, while urging the adoption of 
Focal loss as the preferred approach for achieving more accurate and reliable results in brain tumor 
segmentation endeavors. By embracing Focal loss, researchers and practitioners can unlock the full 
potential of deep learning techniques, leading to more effective medical image analysis and ultimately 
contributing to enhanced patient care and outcomes.
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