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Background & Aim: Due to the applicability of the statistical distributions in many areas 
of sciences, adding parameters to an existing distribution for developing more flexible 
models have been overlooked in the statistical literatures. 
Methods & Materials: A new generalization of power distribution is proposed using alpha 
power transformation method. The new distribution is more flexible than the power 
distribution and contains distributions that can be unimodal or right skewed.  
Results: We study some statistical properties of the new distribution, including mean 
residual lifetime, quantiles, mode, moments, moment generating function, order statistics, 
some entropies and maximum likelihood estimators. 
Conclusion: We fit the APP and some competitive models to one real data set and show 
that the new model has a superior performance among the compared distributions as 
evidenced by some goodness-of fit statistics. 
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Introduction 
In recent years, many impressive families of 

new statistical distributions have been generated 
by statisticians. The necessity to develop an 
extended class of classical distributions is even 
more in areas such as survival data analysis, 
finance and risk modeling, insurance, 
biomedicine, modeling rare events etc. 

The power distribution is used to analysis of 
environmental policy and public health Boyce et 
al. (1) and also in financial engineering domain 
Van Dorp and Kotz (2). The PDF and the 
cumulative distribution function (CDF) of power 
distribution is given by 

;ݔ)݂ 	ܽ, ܾ) = ,ିଵ(ݔܾ)ܾܽ	 0	 < 	ݔ	 < ;ݔ)ܨ ,1ܾ 	ܽ, ܾ) 	= 	  ,(ݔܾ)
respectively, where ܽ	 > 	0 is shape 

parameter and ܾ	 > 	0 is scale parameter. 
Cordeiro et al. (3) introduced the beta power 
distribution (BP) which extends the power 
distribution defined by  Balakrishnan and 
Nevzorov (4). The probability density function 
(PDF) of BP is ݂(ݔ; 	ܽ, ܾ, ,ߙ =(ߚ 	ఈିଵሾ1(ݔܾ)ܾܽ ,ߙ)ܤሿఉିଵ(ݔܾ)	− (ߚ , 0 < ݔ < 1ܾ ,	

where ߙ)ܤ, 	ߙ .is the beta function (ߚ > 	ߚ ,0	 > 	0 and ܽ > 0 are shape parameters and ܾ	 >	0 is the scale parameter. It is observed that this 
four parameter BP distribution has several 
desirable properties and it can be produce better 
fit for the data. 

Recently, Mahdavi and Kundu (5) introduced 
a new method to expand family of distributions 
by adding an extra parameter ߙ, called ߙ-power 
transformation method (APT). The aim of this 
paper is to introduce an extra parameter to the 
power distribution to bring more flexibility. We 
have used the APT method to the power 
distribution and generated a three-parameter ߙ-
power power (APP) distribution. Several 
properties of APP distribution have been 
established. Such that, the random samples 
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generation of the APP is straight forward. It is 
shown that the distribution function, survival 
function, hazard rate function, moment 
generating function and the n-th moment can be 
obtained in closed form. The maximum 
likelihood estimators (MLEs) of unknown 
parameters can be obtained by solving three 
nonlinear equations. Finally, one real data set is 
used to illustrate the usefulness and applicability 
of the APP distribution. 

Methods 
Let ܺ a continuous random variable with 

CDF and PDF, ݔ)ܨ, ,ݔ)݂ and (ࣈ  ,respectively ,(ࣈ
and parameter vector ࣈ. Then the ߙ-power 
transformation of ܺ has the following CDF and 
PDF, ܨ்	(ݔ, ,ߙ =(ࣈ ቐߙி(௫,ࣈ) − ߙ1 − 1 ߙ			݂݅		 > 1, ߙ ≠ ,ݔ)ܨ1 	݂݅								(ࣈ ߙ	 = 1, 	 			(1) 

and ்݂	(ݔ, ,ߙ =(ࣈ ൝ log ߙߙ − ,ݔ)1݂ ߙ			݂݅		(ࣈ,௫)ிߙ(ࣈ > 1, ߙ ≠ ,ݔ)1݂ 			(ࣈ ߙ																݂݅			 = 1, 
In order to generate APP distribution, we take (ݔ)ܨ as a CDF of power distribution in (1). 

Thus, the CDF of APP for 0 < ݕ < 1/ܾ yields 
as: ܨ	ݕ); 	ܽ, ܾ, (ߙ = ቐߙ(௬)ೌ − ߙ1 − 1 ߙ							݂݅		 ≠ 		(ݕܾ)1 ߙ								݂݅		 = 1,	

and 0 otherwise. The PDF of APP for 0	 	ݕ	> < 	1/ܾ, becomes: 

;ݕ)		݂ 	ܽ, ܾ, =(ߙ ቐ log ߙߙ − 			݂݅		ೌ(௬)ߙିଵ(ݕܾ)1ܾܽ 	, ߙ ≠ 		ିଵ(ݕܾ)1ܾܽ 			݂݅		 ߙ	 = 1, 
and 0 otherwise. We denoted the random 

variable ܻ that follows APP distribution by ܻ	 ,ܽ)ܲܲܣ	∽ ܾ, ߙ  where ,(ߙ > 	0 and ܽ	 > 	0 are the 
shape parameters and ܾ	 > 	0 is the scale 
parameter. 

Results 
Plots of the APP 
Plots of the APP density function for selected 

choices of the parameters ܽ, ߙ and fixed scale 
parameter ܾ	 = 	1 are given in Figure 1. The 
PDF of the APP distribution can be either 
unimodal or right skewed. If ߙ	 ≤ 1 and 0 <ܽ ≤ 1, then it is a decreasing function of ݕ, and 
for 0 < ߙ < 1 and ܽ	 > 	1, it is an unimodal 
function. 

The survival function, ܵ(ݕ), and the HRF, ℎ(ݕ), for APP distribution, are in the following 
forms for 0 < ݕ	 < ;ݕ)		ܵ ܾ/1 	ܽ, ܾ, =(ߙ ቐ log ߙߙ − 1 (1 − 	݂݅		(ଵିೌ(௬)ߙ 			, ߙ ≠ 11 − 		(ݕܾ) 		݂݅			 ߙ		 = 1, 

and ℎ		(ݕ; 	ܽ, ܾ, (ߙ
= ۔ۖەۖ
൬logۓ ߙߙ ൰ 1ೌ(௬)ߙିଵ(ݕܾ)ܾܽ − ଵିೌ(௬)ߙ 		݂݅		 			, ߙ ≠ ିଵ1(ݕܾ)1ܾܽ − (ݕܾ) 	݂݅	 ߙ		 = 1,

Figure 1. Density plots of the APP distribution with various shape parameters and fixed scale parameter ܾ	 = 	1. 
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Plots of the HRF for selected choices of the 
parameters ܽ, ߙ and fixed scale parameter ܾ	 =	1 are given in Figure 2. If ܽ	  	1, then ℎ		(ݕ; 	ܽ, ܾ, ;ݕ)		and ℎ ,ݕ is an increasing function of (ߙ 	ܽ, ܾ, 	ܽ can be a bathtub shaped for (ߙ <	1, as ߙ tends to 0. The failure rate function is an 
important quantity characterizing life 
phenomena. Almost all of the standard 
distributions in statistics do not exhibit a bathtub 
shape for hazard rate function. Even the 
traditional Weibull distribution does not exhibit 
a bathtub shape for hazard rate function. Thus, it 
is important that one knows which distributions 
exhibit this shape and most real-life systems 
exhibit bathtub shapes for their hazard rate 
functions. 

Mean residual lifetime function 
The mean residual lifetime (MRL) function 

of APP distribution is given by ݉(ݔ) = 	ܺ)ܧ − 	ܺ|ݔ	 >  (ݔ	
= 	ߙ)1ܾ (ೌ(௫)ߙ	− ൝1)ߙ − (ݔܾ
− ݈݃) ൫1(ߙ − !ାଵ൯݇(ݔܾ) (ܽ݇  1)ஶ

ୀ ൡ. 
For 0 < ߙ < 1 the MLR function can be 

written as ݉(ݔ)= ߛ ቀ1ܽ , − log ቁߙ − ߛ ቀ1ܽ , (ݔܾ)− log ቁߙ − 1)ߙ − ೌ(௫)ߙ)ܾ(ݔܾ − (ߙ , 
where ݏ)ߛ, (ݐ 	=  ௦ିଵ݁ି௫௧ݔ	  is the ݔ݀

incomplete gamma function. If ܽ	  	1, then the 
APP distribution has increasing hazard rate 
function and hence, decreasing MRL function. 
For ܽ	 < 	1	and ߙ close to 0, the APP 
distribution has bathtub-shape hazard rate 
function and hence, upside-down bathtub-shape 
MRL function. 

Mode, quantile and simulation 
The Mode of APP distribution can be 

obtained using the following simple formula: ܯ	 = 1ܾ ൬ 1 − ܽܽ log  .൰ଵߙ
The  −  ℎ quantile of APP distribution isݐ

given by 

ݕ = 1ܾ ቆlogሼ(ߙ − (1  1ሽlog ߙ ቇଵ .						(2) 
The median can be derive from (2) by 

considering 	 = 	0.5 as 

݉ = 1ܾ ቆlog(ߙ  1) − log 2log ߙ ቇଵ. 
One of the advantages of the APP distribution 

is that its CDF has a closed form which helps us 
to generate random variables by using the 
following simple formula 

ܺ = 1ܾ ቆlogሼ(ߙ − 1)ܷ  1ሽlog ߙ ቇଵ, 
where ܷ is a uniformly distributed random 

variable on (0, 1). 

Figure 2. The HRF of APP distribution with various shape parameters and fixed scale parameter ܾ	 = 	1. 
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Moments and moment generating function 
Let ܺ a random variable follows ܲܲܣ(ܽ, ܾ,  We derive infinite expansions for .(ߙ

the ݊-th ordinary moment of ܺ as ߤ = =(ܺ)ܧ ܾܽ(ߙ − 1) (log !ାଵ݇(ߙ (ܽ݇  ܽ  ݊)ஶ
ୀ .									(3) 

If 0 < ߙ < 1 then (3) can be expressed with a 
simpler formula as ߤ = (ܺ)ܧ = ߛ ቀ݊ܽ  1,− log ቁ(1ߙ − −)ܾ(ߙ logߙ). 

Based on the first four ordinary moments of 
the APP distribution, the measures of skewness (ߜଵ) and kurtosis (ߢଵ) of the APP distribution 
can obtained as ߜଵ = ଷߤ − ଶߤଵߤ3  ଵߤ)ଵଷߤ2 − ଵଶ)ଷଶߤ , 

and ߢଵ = ସߤ − ଷߤଵߤ4  ଶߤଵଶߤ6 − ଵߤ)ଵସߤ3 − ଵଶ)ଶߤ . 
Figures 3 (a) and (b) show the skewness and 

kurtosis of APP distribution as a function of 
parameter ߙ for different values of ܽ and fixed 
scale parameter ܾ	 = 	1. It is observed that the 
skewness is a decreasing function of ߙ and 
kurtosis first decrease as ߙ increase and then 
start increasing. 

The moment generating function (MGF) can 
be obtained by the following series expansion ܯ(ݐ) =  ஶ!݊(ܺ)ܧݐ

ୀ . 
So, the MGF of APP distribution is given by 

(ݐ)ܯ = ߙܽ − 1 (logߙ)ାଵܾ݇! (ܽ݇  ܽ  ݊)ஶ
ୀ

ஶ
ୀ .

Also, if 0	 < ߙ < 1 then the MGF can be 
obtained using the following formula: ܯ(ݐ)= ߙ1 − 1ߛ ቀ݇ܽ  1,− logߙቁ݇!ஶ

ୀ ቌ −)ܾݐ log ଵቍ(ߙ
. 

Order statistics 
Order statistics make their appearance in 

many areas of statistical theory and practice. We 
now give the PDF of the ݇-th order statistic ܻ	 =	ܺ: in a random sample of size ݊ from the APP 
distribution as follows 

݂(ݕ) = ݊!(݇ − 1)! (݊ − ݇)! −ሼ1(ݕ)ିଵܨ = (ݕ)ሽି݂(ݕ)ܨ ݊! ܾܽ log ߙ)ߙ − 1) ݇)(ݕܾ)(ଵାାିି)ߙߙିଵ(−1)ିିିଵ(ݕܾ) − ݅ − 1)! (݊ − ݇ − ݆)! ݅! ݆!ି
ୀ

ିଵ
ୀ

Entropies 
Entropy has been used in various situations in 

Science and Engineering. The entropy of a 
random variable ܺ with PDF ݂(ݔ) is a measure 
of variation of the uncertainty. There exist many 
entropy definitions and they are not equally good 
for all applications. While the most famous (and 
most liberal) Shannon (6) Entropy, which 
quantifies the encoding length, is extremely 
useful in information theory. Shannon showed 
important applications of this entropy in 
communication theory and many applications 
have been used in different areas such as 
Engineering, Physics, Biology and Economics. 
The Shannon entropy for APP distribution is 
obtained as 

Figure 3. The skewness and kurtosis of APP distribution as a function of ߙ for some values of ܽ and fixed ܾ	 = 	1. 
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−)ܧ log ((ݔ)݂ = − log ቀೌ ୪୭ఈఈିଵ ቁ ଵఈିଵ∑ (log ାଵஶୀ(ߙ ሼ  ܽ − 1ܽ(݇  1)(݇  1)!  (ܽ − 1) log ܾ(݇  1)!− ܽ log !݇ߙ (݇ܽ  2ܽ)ቋ.					(4) 
A generalized definition of entropy that stems 

from modifying the additivity postulate and 
results in a class of information measures that 
contain Shannons definitions as special cases is 
Rényi (7) entropy. If ܺ has the PDF f(x) then 
Rényi entropy is defined by ܫோ(ߩ) = 11 − ߩ log ൜න݂(ݔ)ఘ݀ݔൠ 

where ߩ	 > 	0 and ߩ ≠ 	1. Using (4), the 
integral in ܫோ(ߩ) for the APP distribution can be 
reduced to න ஶݔఘ݀(ݔ)݂

= ൬ܾܽ log ߙߙ − 1 ൰ఘ ߩ) log !݇(ߙ ܾ(݇ܽ  ߩܽ − ߩ  1) .ஶ
ୀ  

So, one obtains the Rényi entropy as ܫோ(ߩ)= 11 − ߩ ൝ߩ log ൬ܾܽ log ߙߙ − 1 ൰
 log൭ ߩ) log !݇(ߙ ܾ(݇ܽ  ߩܽ − ߩ  1)ஶ

ୀ ൱ൡ. 
Discussion 
Maximum likelihood estimation 
We now determine the MLEs of the 

parameters of the APP distribution from 
complete samples only. Let ݔଵ, ,ଶݔ . . . ,   be aݔ
sample from ܲܲܣ(ܽ, ܾ,  distribution. Then, the (ߙ
log-likelihood function is log ܮ = ݊ log ܽ  ݊ܽ log ܾ  ݊ log ൬ log ߙߙ − 1൰ (ܽ − 1)log ݔ

ୀଵ ܾ log ݔߙ
ୀଵ . 

The first order derivatives of log ܮ are 

߲ log ߲ܽܮ = ݊ܽ  ݊ log ܾ log ݔ
ୀଵ ܾ log ߙ ൭log ܾݔ

ୀଵݔ
ୀଵ log ߲ ,൱ݔ log ܾ߲ܮ = ܾ݊ܽ  ܾܽିଵ  log ݔߙ

ୀଵ , 
and ߲ log ߙ߲ܮ = ܾߙ ݔ

ୀଵ  ݊ ߙ − 1 − ߙ log ߙ)ߙߙ − 1) log ߙ . 
The MLEs of the unknown parameters cannot 

be obtained explicitly. They have to be obtained 
by solving some numerical methods, like 
Newton-Raphson or Gauss Newton methods or 
their variants. In this paper we use the optim 
function from the statistical software R (R Core 
Team, (8)) to maximize the logarithm of the 
likelihood function. This Fisher information 
matrix is important because it can be used to 
construct asymptotic confidence intervals for the 
parameters from its estimates. Let ߠ	 =	(ܽ, ܾ, ߠ ᇱ and(ߙ 	= 	 ( ොܽ, ܾ,  ො)ᇱ denote the vectorߙ
of parameters and its respective estimates. Under 
regularity conditions, the asymptotic distribution 
of ߠ is given by √݊൫ߠ − ~൯ߠ ଷܰ൫0, ۷ିଵ(ߠ)൯,

where ۷(θ)	is expected information matrix. 
This asymptotic behavior is valid if ۷(θ) is 
replaced by ۸(θ) where ۸(θ) is the observed 
information matrix evaluated at ߠ. The 
asymptotic multivariate normal ଷܰ൫0, ۸ିଵ(ߠ)൯ 
distribution can be used to construct approximate 
confidence intervals for the individual 
parameters and for the hazard rate and survival 
functions. Package numDeriv of R language can 

Figure 4. Empirical TTT plot for the glass fibres data 
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be used to compute the Hessian matrix and its 
inverse, standard errors and asymptotic 
confidence intervals. 

Application: glass fibres data 
The following 46 data points represent the 

strengths of 15 cm glass fibres, originally 
obtained by workers at the UK National Physical 
Laboratory. The data set is obtained from Smith 
and Naylor (9). The sorted data are given as 
follows: 0.37 0.40 0.70 0.75 0.80 0.81 0.83 0.86 
0.92 0.92 0.94 0.95 0.98 1.03 1.06 1.06 1.08 
1.09 1.10 1.10 1.13 1.14 1.15 1.17 1.20 1.20 
1.21 1.22 1.25 1.28 1.28 1.29 1.29 1.30 1.35 
1.35 1.37 1.37 1.38 1.40 1.40 1.42 1.43 1.51 
1.53 1.61. 

In order to identify the shape of the hazard 
function, we shall consider a graphical method 
based on the Total Time on Test (TTT) plot. In 
its empirical version the TTT plot is given by ܶ(ݎ/݊) = ∑ ܻ:ୀଵ  (݊ − (ݎ ܻ:∑ ܻ:ୀଵ

where ݎ	 = 	1, 2,			, ݊ and ܻ: represents the ݅-th order statistic of the sample. If the empirical 

TTT transform is convex, concave, first convex 
then concave, and first concave then convex, the 
shape of the corresponding hazard rate function 
is, respectively, decreasing, increasing, bathtub, 
and unimodal. (For more details, see Aarset, 
(10)). Figure 4 shows the empirical TTT plots 
for the glass fibres data, which is concave 
indicating an increasing failure rate function, 
which can be properly accommodated by APP 
distribution. We compare APP distribution with 
power distribution, BP distribution and 
Transmuted Power Function distribution (T-Ps) 
introduced by ul Haq et al. 

11) with PDF݂(ݔ) = ఈߚఈݔߙ ൜1  ߠ − ߠ2 ൬ߚݔ൰ఈൠ ,0 < ݔ < ,ߚ ߙ > 0, ߚ > 0,−1< ߠ < 1. 
To see which one of these models is more 

appropriate to fit data. The MLEs of parameters, 
Akaike Information Criterion (AIC) value, 
Bayesian Information Criterion (BIC) value, 
Kolmogorov-Smirnov (K-S) statistic and its p-
value are given in Table 1. The APP distribution 

Figure 5. Probability plots for the fitted distributions 

Table 1. The maximum likelihood estimates, AIC, BIC and K-S and its p-values for glass fibers data. 
The model MLEs of the parameters AIC BIC K-S 

statistic 
p-value 

APP ොܽ = 4.6523, ܾ = 0.6211, ොߙ = 0.0455 10.1961 15.68202 0.0699 0.9872 
BP ොܽ = 3.5953, ܾ = ොߙ ,0.5996 = መߚ ,1.17 = 2.6908 12.7105 20.0251 0.0701 0.9770 
T-Ps ොܽ = 3.6454, ܾ = 1.61, ߠ = 0.8614 11.0284 16.5143 0.0895 0.8548
Power ොܽ = 2.5565, ܾ = 0.6211 17.4726 21.1299 0.1963 0.0578 
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gives the smallest AIC, BIC and K-S statistics. 
The probability plots for the fitted distributions 
are plotted in Figure 5. It is clear from Table 1 
and Figure 4 that the APP model provides the 
best fits to the data. 

Conclusion 
In this paper, we proposed a new family of 

distributions called alpha-power power 
distribution (APP), by applying the alpha-power 
transformation method initially proposed by 
Mahdavi and Kundu (5) to the classical power 
distribution. The HRF of the APP distribution 
can be a bathtub shape that is important quantity 
characterizing life phenomena. Various 
properties of the new distribution are obtained. 
These properties include moments, quantiles, 
mode, moment generating function, order 
statistics and some entropies. We dis-cuss 
maximum likelihood estimation of the model 
parameters and derive the observed information 
matrix. An application of the APP distribution is 
demonstrated in a real data set. It provides a 
better fit than other competing models. 
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