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Background & Aim: In survival studies, incidence of competing risks causes that the time 
of event of interest to be unknown. Analysis of competing risk data, often implemented using 
hazard-based method under proportional hazard assumption. In this study, we interpreted 
covariate effect under accelerated failure time model and cause-specific survival function. 
Methods & Materials: We considered Weibull hazard and survival function as cause-
specific hazard and survival function and explored the relation between these function. 
Estimation of parameters performed using Bayesian methods with non-informative priors that 
implemented in R2WinBUGS package of R software. 
Results: Simulation study showed that, the relation between hazard and survival parameters 
for Weibull distribution is also established between parameters of cause-specific hazard and 
cause-specific survival function. This relation also verified in PBC data set for logarithm of 
serum bilirubin and D-penicillamine effect. 
Conclusion: Although in competing risk studies, most of the analysis performed under PH 
assumption, analysis based on AFT models will also be applicable for these data. In these 
setting, coefficients can be interpreted as effects of covariate on time to each event. 
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Introduction 
In many survival studies, the risk of interest 

cannot occur due to incidence of another risk. 
These other causes are considered as competing 
risks of the event of interest. Incidence of 
competing risks causes the time of incidence of 
the event of interest to be unknown. For example, 
in a cancer study investigating the time from 
treatment initiation to cancer-related death, deaths 
from cardiovascular diseases are competing 
events. In most applications of competing risks, 
one risk considered as risk of interest, while other 
risks can be classified to one group and 
considered as competing risks (1-3). 

Analysis of competing risks data is performed 
under two approaches including latent failure 

times and bivariate approach. In the latent failure 
times approach, it is assumed that for each of the 
K potential events of D1, …, DK, there is a 
potential failure time variable X1,X2,…,XK or 
latent failure time. However, only their minimum 
value i.e. ܶ = min	(ݔଵ, ,ଶݔ … , (௞ݔ  can be 
observed. In this approach, because for each 
individual only one of the X’s i.e. Xk is observable 
then the correlation between the X’s cannot be 
estimated from observed data that lead to 
unpopularity of this approach (2, 4). 

In the bivariate approach, instead of K 
potential time variables of X1,X2,…,Xk, variable 
T considered as the event time and variable d that 
indicate type of event. These two variables (T,d) 
are modeled concurrently. In this approach, there 
are several methods of analysis including mixture 
models, vertical modeling, regression based on 
pseudo-observations, Fully Specified 
Subdistribution model, as well as models based 
on hazard function, which itself includes Cause-
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specific hazard regression and Subdistribution 
hazard regression. Methods based on hazard 
function are commonly used for analyzing 
competing risk data. In bivariate approach, there 
is no need to assumption about independence of 
competing risks (1,2,5). 

Application of cause-specific hazards function 
under both PH and AFT assumptions was first 
proposed by Prentice (6). In this method, to 
estimate the parameters of each event, the events 
from other causes are considered as censored and 
estimation of parameters under PH assumption is 
interpreted as probability for failing from an event 
of type k in an infinitesimal small time interval 
given that he/she has not experienced any of the 
events so far. In addition to cause-specific hazard 
function, Prentice and Kalbfleich proposed 
cumulative incidence function which indicates 
the cumulative probability of incidence of the 
event of interest in the presence of competing 
risks (3,7). 

In cause-specific models, cumulative 
incidence function for each event is a function of 
cause-specific hazard of all events. As in this 
method the effect of exploratory variable on 
competing events is not considered, thus the 
resulting estimations cannot be directly translated 
to a higher effect of variable on incidence of the 
event of interest. In other words, a higher cause-
specific hazard for event k for one group does not 
necessarily transform to a higher cumulative 
incidence of that event for that group (3,7). To 
estimate the effect of exploratory variables on the 
cumulative incidence of each risk, fine and gray 
proposed sub-distribution hazards function, in 
which there is a direct relationship between 
estimation of parameters of the risk function and 
the cumulative incidence function(8). Modeling 
of CIF (Cumulative incidence function) by 
parametric distributions through direct and 
indirect methods was proposed by Jeong (7,9). 

If parametric distribution provides a good fit to 
survival time, parametric models would be more 
efficient than nonparametric and semi-parametric 
methods because in these methods fewer 
parameters need to be estimated (10). Under the 
cause-specific hazard method, parametric 
distributions have mainly used for modeling of 
CIF (7, 9-11). Parametric distributions have also 
been used in mixture models (12-14) . Parametric 
distributions have been investigated for analyzing 
competing risks under the latent failure time 
approach by both ML and Bayesian methods. 

Firstly, Basu and Klein used Weibull and 
exponential distributions under PH assumption 
and ML estimation method (15-17). DeGroot and 
Goul also used Bayesian methods for estimation 
of exponential distribution parameters in ALT 
models (18). Tan (19), Benue and Mazuchi et al 
(20)  as well as Xu et al (21) employed Weibull 
and exponential distributions in ALT models 
using Bayesian methods for estimation of 
parameters. 

Under PH assumption, parameters interpreted 
as relative risk of incidence event and in models 
under AFT assumption, interpretation of risk 
factors is performed on survival time (failure 
time). In other words, in these models, the 
logarithm of survival time is modeled as a 
function of exploratory variables (22).  

One of the parametric distributions widely 
used in survival analyses is Weibull distribution. 
The unique feature of this distribution is that if PH 
assumption holds then AFT assumption also 
holds, and also there is a relation between 
estimation of parameters under the two models 
(23). 

In competing risks settings, if we are looking 
for etiology of disease, cause-specific competing 
risks models should be utilized. In these studies, 
due to the characteristics of the hazard function 
and flexibility of semi-parametric models, 
hazard-based regression methods are often 
expended under PH assumption and parametric 
models which often have AFT characteristics 
have attracted less attention. On the other hand, in 
competing risks analyses conducted by 
considering AFT assumption under different 
approaches, no interpretation has been presented 
for estimations of parameters based on the time 
until incidence of the event. Therefore, in this 
study we are after examining the relationship 
between regression coefficients of cause-specific 
hazard and cause-specific survival for Weibull 
distribution. We also want to check whether PH 
and AFT assumptions hold true for each of the 
risks. Based on these, we try to present a suitable 
interpretation of the effect of exploratory 
variables on the time until incidence of event in 
competing risks studies under AFT approach. 

Methods 
Cause- specific hazards models 
In this model, the risk function for the cause of 

the kth event is: 
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λ௞ሾݐ; ሿ(ݐ)ܺ = lim௛→଴ ℎିଵܲ(ݐ ≤ ܶ < ݐ + ℎ, ܭ = ݇|ܶ≥ ,ݐ  ((ݐ)ܺ
In this relation, λ௞ሾݐ; ሿ(ݐ)ܺ  is the rate of 

instantaneous incidence of the event type k at the 
time t in the presence of other competing risk. If 
events considered as mutually exclusive, then the 
overall hazard at each time is equal to the sum of 
all cause- specific hazards. 

In the cause-specific hazard, the cumulative 
incidence is a function of cause-specific hazard of 
all events, which is defined as the following 
relation: ܨ௞(ݐ|વ) = න ௧|ݏ)௞ߣ

଴ વ)exp൭−෍Λ௟(ݏ|વ)௄
௟ୀଵ ൱݀ݏ 

The likelihood function of the model of cause-
specific competing hazards in the presence of K 
competing risks is: ܮ=ෑ൭ሼߣ௞௜(ݐ௜; ሽఋ೔((௜ݐ)࢏ࢄ ෑ݁݌ݔ ቊ−න ;௜ݐ)௝ߣ ஶ(ݑ)࢏ࢄ

଴ ቋ௄ݑ݀
௞ୀଵ ൱௡

௜ୀଵ
Where, the first component indicates the risk 

function, while the second component represents 
the survival function, ߜ௜ denotes the type of event. 
For Weibull distribution under PH assumption, in 
the above likelihood function, hazard and survival 
functions replaced by ℎ	(ݐ) (ݐ)ܵ		and		௣ିଵݐ݌ߣ= = exp(−ݐߣ௣), respectively. In 
these functions ߣ  is the scale parameter and p 
represents the shape parameter. To investigate the 
effect of exploratory variable, the scale parameter 
is often modeled asλ = exp	(ߚ଴ +  .(ଵܴܶܶߚ

In accelerated failure time models, the 
logarithm of the time variable is considered as a 
function of exploratory variables. When there is 
one exploratory variable, this model will be: log( ௜ܶ) = ߙ + ߚ ∗ ܴܶ ௜ܶ +  ௜ߝ

In which, ߝ  is a random variable. If ߝ  has a 
extreme value distribution, then log (Ti) will have 
Weibull distribution. In this case, the risk function 
and survival function will be: 

 ℎ(ݐ௜|࢛) = ૚ఙഄ௧೔ ℎ଴(log(ݐ௜) − (࢛|௜ݐ)ܵ(ఌߪ/(࢏ࢄ)ߣ = ܵ଴(log(ݐ௜) −  (ఌߪ/(࢏ࢄ)ߣ
Where, ߣ( ௜ܺ)  is a function of exploratory 

variables as )ߣ ௜ܺ) = ଴ߙ + ଵߙ ∗ ܴܶܶ . 	ܵ଴(. )  and ℎ଴(. ) are the survival function and risk function 
of the extreme value distribution. 

As can be seen in log-linear form of AFT 
models, a direct relationship is assumed between 
exploratory variables and the failure time 
variable. This means that in these models 
estimation of parameters can be interpreted based 

on the effect of exploratory variable on the rate of 
progression of disease. 

In standard survival studies, there is a relation 
between coefficients obtained from the PH and 
AFT forms of the Weibull models such that ߚ௝ ௝ߛ−= ∗  in which β is the parameter estimation ,݌
under PH assumption and α is the parameter 
estimation under AFT assumption, and p is the 
shape parameter. For example, when considering 
a binary exploratory variable, ߚ௝ indicates that the 
risk of incidence of event in the exposure group exp(β୨) time the risk of incidence in the group 
without exposure. Under PH assumption, this 
proportion remains constant over time. In 
contrast, ߛ௝  shows that for all fixed value of 
survival probability S(t)=q, survival time in the 
exposure group ݁݌ݔ(γ௝) time the survival time in 
the group without exposure, and under AFT 
assumption, this proportion remains constant over 
time. 

In this study, parameters estimated under 
Bayesian approach. Survival time assumed to 
follow Weibull distribution. Parameters were 
estimated under both PH and AFT assumptions. 
In Bayesian inference, for regression parameters, 
normal prior distribution N(0,0.01), and for 
parameter of shape (p), gamma distribution (0.01,0.01)ܽ݉݉ܽܩ~݌ were considered. Model 
implemented in R2WinBUGS package of R 
software. The values of Gelman-Rubin statistics 
close to 1 were considered as index for parameters 
convergence. 

Results 
The results of simulation study 
First, the relationship between parameters of 

Weibull model under PH and AFT assumptions 
was examined by the simulation. In the 
simulations, two competing risks were considered 
independent of each other. Because for two 
independent variables with ଵܶ~ߙ)݈݈ݑܾ݅݁ݓଵ, 	(ߚ and  ଶܶ~	݈݈ݑܾ݅݁ݓ	ߙ)ଶ, 	(ߚ distributions, variable T, 
T=min(T1,T2) has Weibull distribution with the 
parameter form ߚ  and the scale parameter λ ଵିఉߙ)= + ଶିఉ)ିଵ/ఉߙ  (25-27), thus time of event 
of these two competing risks T was generated 
from  ܶ~ߣ)݈݈ݑܾ݅݁ݓ,  distribution, and using	(ߚ
Bayersman approach (4), it was allocated to two 
competing risks. Scale parameters were modeled 
as exponential functions of the form ଵߙ	 =exp	(ߛ଴ + (ݐݎݐଵߛ  and ߙଶ = exp	(ߟ଴ + (ݐݎݐଵߟ , 
where trt variable was generated out of 
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(1,0.5)݈ܽ݅݉݋ܾ݊݅~ݐݎݐ  distribution. Simulations 
were performed under three scenarios. The first 
scenario was considered without censoring. The 
second and third scenarios were performed with 5 
and 10% censorship, respectively. The data of 
time until censorship was also generated from 
uniform distribution. All simulations are 
conducted with n= 100 and replicates 1000, with 
the results presented in table and diagram. The 
parameters of two risks were considered to be 
close to each other, so that the ratio of incidence 
of event out of each of the risks becomes close to 
50%. These parameters are provided in the Table 
1. 

Comparison of estimations under PH model 
and real values demonstrate that the estimations 
are close to the real values of the parameters. By 
comparing the estimations under the three 
scenarios, it was observed that with increasing 
censoring level, estimation of the treatment 
parameter is more affected than other parameters. 

Comparison of the estimations of parameters 
under AFT assumption with the values obtained 
from β௝ = ௝ߛ− ∗ ݌  across all three scenarios 

indicates that these two values are almost the 
same. In other words, between the parameters of 
cause-specific hazard and cause-specific survival, 
the relation β௝ = ௝ߛ− ∗ ݌  holds. Plots of cause-
specific hazard and survival under both PH and 
AFT assumption for first scenario presented in 
Figures 1 and 2. The corresponding plots under 
the two modeling were completely similar. Based 
on the former, it is observed that the hazard of 
incidence in the treatment group (trt=1) is 
proportional to hazard in control group (trt=0) 
over time, where this ratio for the first event was exp(−1.4) = 0.24, and for the second event it 
was exp(−1.1) = 0.33 . In the cause-specific 
survival plots, the survival probability of both 
treatment and control groups over time was 
proportional, and AFT assumption holds in each 
of the cause-specific functions. This means that 
for any value of survival probability S(t)=q, the 
ratio of time until the first event in treatment 
group to control group was exp(2.2) = 9.02, and 
the ratio of time until incidence of the second 
event in the treatment group to control group was exp(1.7) = 5.47.  

Table 1. Result of simulation for 3 scenarios under PH and AFT modeling of Weibull distribution 
Parameters Estimates based on PH model Estimates based on AFT model

Estimate Credible 
Interval 

Estimate Credible 
Interval 

First 
Scenario 

First event ߛ଴ -2.1 -2.1 (-2.2, -2) 3.1 ଵ -1.5 -1.4  (-1.6, -1.4)ߛ(3.2 ,3.1) 2.2 (2.1, 2.4)
Second event ߟ଴ -2.3 -2.2  (-2.4, -2.1) 3.4 ଵ -1.1 -1.1  (-1.2, -1.0)ߟ(3.5 ,3.3) 1.7 (1.5, 1.8)
Shape parameter 1.5 1.5  (1.5, 1.6) 1.6 (1.5, 1.6)

Second 
Scenario 

First event ߛ଴ -2.1 -2.1  (-2.2, -2) 3.2 ଵ -1.5 -1.4ߛ(3.23 ,3.1)  (-1.6, -1.3) 2.2 (2.3, 2.1)
Second event ߟ଴ -2.3 -2.3  (-2.2, 2.2) 3.4 ଵ -1.1 -1.1ߟ(3.5 ,3.3)  (-1.2, -1.0) 1.7 (1.5, 1.8)
Shape parameter 1.5 1.5  (1.4, 1.6) 1.5 (1.4, 1.6)

Third 
Scenario 

First event ߛ଴ -2.1 -2.2  (-2.3, -2.1) 3.2 ଵ -1.5 -1.6ߛ(3.3 ,3.1)   (-1.8, -1.5) 2.3  (2.2, 2.5)
Second event ߟ଴ -2.3 -2.3  (-2.4, -2.2) 3.4 ଵ -1.1 -1.2ߟ(3.5 ,3.3)   (-1.3, -1.0) 1.7 (1.6, 1.8)
Shape parameter 1.5 1.5  (1.4, 1.5) 1.5  (1.4, 1.6)

Figure 1. Cause-specific hazard plot for first scenario of simulation 
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Application in real data 
To apply the model in real data, data of PBC 

study was used. These data are also available in 
JM package of R software. In this study, 312 
patients suffering from biliary cirrhosis 
participated, where 158 and 154 individuals 
received medication and placebo, respectively. 
The main objective of PBC study was to 
investigate the effect of intake of D-penicillamine 
on survival of patients. For this purpose, in 
addition to the information associated with basic 
variables including age at the beginning of the 
study, gender, etc. follow-up information of 
markers such as serum bilirubin has also been 
registered. In this dataset, for survival variable 
Weibull distribution has been used in other 
studies (24). In this study, death has been 
considered as the first event and receiving 
transplant has been regarded as the second event. 
Further, the effect of the value of serum bilirubin 
at the beginning of the study on the risk of 
incidence of each of the two events was examined 
under PH modeling. Also, the effect of this 
marker on the duration until incidence of each of 
the two events was investigated under AFT 
modeling after controlling the effect of receiving 
treatment. Out of the 312 patients in the study, 
140 died and 29 received a transplant. Shape 
parameter for either of the two events was 
considered unique. The results of model fitting 

under PH and AFT modeling have been reported 
in the Table 2. 

As can be seen from the above table, 
estimation of treatment effect under PH model 
was obtained as -0.21 for death and 0.17 for 
transplantation. However, the credible interval for 
both parameters involved value of zero. In other 
words, the risk of incidence of death event as well 
as the risk of transplantation was not significantly 
different among treatment and control group. 
Estimation of these parameters under AFT model 
was obtained as 0.3 and -0.24 for death and 
transplantation, respectively. Here also the 
credible interval involved the value of zero for 
both parameters. In other words, the time until 
death and transplantation has not significantly 
different among the individuals in the treatment 
and control groups. Under PH assumption, 
estimation of the parameter of logarithm of serum 
bilirubin variable was obtained as 0.57 and 0.35 
for death and transplantation, respectively. Under 
AFT assumption, estimation of the logarithm of 
serum bilirubin variable parameter was obtained 
as -0.74 and -0.55 for death and transplantation, 
respectively. 

By comparing estimation of parameters under 
AFT model with the values obtained from β௝ ௝ߛ−= ∗  it is observed that the obtained values are ,݌
very close to each other. For example, estimation 
of logarithm of serum bilirubin parameter under 
AFT model (-0.74) and the value obtained from 

Figure 2. Cause-specific survival plot for first scenario of simulation 

Table 2. Result of cause-specific modeling under PH and AFT assumption for PBC data 
Estimates based on PH model Estimates based on AFT model 

Estimate Credible Interval Estimate Credible  Interval 
Death Constant -2.06  (-2.52, -1.67)  2.69  (2.39, 3.03)  

Treatment -0.21  (-0.49, 0.02)  0.3  (-0.02, 0. 6)  
Log (serBilir) 0.57   (0.43, 0.75)  -0.74  (-0.87, -0.62)  

Shape parameter 1.33   (1.14, 1.54)  1.36   (1.17, 1.58)  
transplantation Constant -2.53  (-4.49, -1.53)  3.85   (3.16, 4.87)  

Treatment 0.17  (-4.49, 0.97) -0.24  (-1.03, 0.4)  
Log (serBilir) 0.35   (0.17, 0.66)  -0.55  (-0.77, -0.33)  

Shape parameter 1.64   (1.13, 2.24)  1.76  (1.27, 2.24)  
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β௝ = −γ௝ ∗ ݌ = −0.75  are very close to each 
other. Further, estimation of the parameter of this 
variable for transplantation event under AFT 
model was obtained as -0.55, which is very close 
to β௝ = ௝ߛ− ∗ ݌ = −0.57. For the group therapy 
variable, it is also observed that under AFT 
assumption, estimation of treatment parameter 
was obtained as 0.3 and -0.24 for the event of 
death and transplantation, respectively. 
Estimation of parameters using β௝ = −γ௝ ∗  ݌
gave 0.28 and -0.28, respectively. Estimation of 
shape parameter under PH model was obtained as 
1.33 and 1.64 for death and transplantation, 
respectively. The values of estimation of this 
parameter under AFT model for both events were 
obtained to be slightly higher than those obtained 
by PH model, obtained as 1.36 and 1.76 for death 
and transplantation, respectively. 

Discussion 
In competing risks studies conducted in the 

area of medical sciences, mostly hazard-based 
models, i.e. cause-specific hazards and sub-
distribution hazards methods are used. This is 
because, in this approach the analysis can be 
performed without identifiability problems and all 
measures can be estimated from observable data. 
Most studies conducted on hazard-based models 
have been performed under the assumption of 
proportionality of hazards (PH) and using semi-
parametric methods (1). On the other hand, 
performing analyses under AFT assumption by 
parametric or semi-parametric methods has been 
draw less attention. Even in case of application of 
these models, no interpretation has been 
presented regarding the effect of exploratory 
variable on the time until incidence of the events 
(7, 12-14, 25-27). In this study, at first the 
relationship between estimation of parameters of 
cause-specific hazard function and survival 
function of Weibull distribution was examined 
and then interpretation of the estimations of 
parameters under AFT Weibull model presented. 
The simulations indicated that under Weibull 
distribution, if PH assumption holds in the cause-
specific hazard function, it can be concluded that 
AFT assumption also holds in cause-specific 
survival function. For each of the risks, β௝ ௝ߛ−= ∗ -holds between the parameters of cause ݌
specific hazard function and cause-specific 
survival function. Next, cause-specific hazard and 
cause-specific survival analysis was performed 

for PBC data under Weibull distribution. It was 
observed that the relation is also applicable in 
these dataset. The difference observed in 
parameter estimation associated with 
transplantation event can be a result of the small 
number of this event. 

In cause-specific proportional hazard models, 
β shows the relative hazard. Hazard is a function 
that defined as instantaneous potential of event 
per unit time (24, 27-29). Because hazard is a rate 
not a probability, perceiving the effect of 
covariate as relative of hazard or relative of rates 
become difficult (23). For example, in 
interpreting the results of PBC data, it says that , 
after controlling the effect of serum bilirubin, 
intake of D-penicillamine decreases hazard of 
death by 1 − exp(−0.21) = 0.19  while it 
increases hazard of transplantation by 1 − exp(0.17) = 0.18  In interpreting the 
coefficient of cause-specific hazard function for 
serum bilirubin, it can be said that after 
controlling the effect of D-penicillamine, for each 
unit increase in the logarithm of serum bilirubin, 
the risk of incidence of death event grows by exp(0.57) = 1.76 times, and the corresponding 
risk of transplantation increases by exp(0.35) =1.41 times. These results were in accordance with 
the results of previous study conducted on these 
data(24). In the models under AFT assumption, 
the interpretations are performed on the variable 
of time until incidence of the event. In 
interpreting the effect of exploratory variable 
under AFT assumption, it is stated that the ratio 
of survival time in the treatment and control group 
is constant for each value of survival probability ܵ(ݐ) = ݍ . In competing risks models, for 
interpreting the effect of exploratory variable on 
time until incidence of each of the events under 
AFT assumption, it can be said that for each unit 
increase in the exploratory variable, the time until 
incidence of each of the events grows by exp൫ߚ௝൯ 	݆ = 1,… ,  times, and this ratio remains ܭ
constant per each value of survival probability ܵ(ݐ) =  For example, in interpreting the effect .ݍ
of D-penicillamine drug and serum bilirubin on 
the time until event incidence, it can be said that 
D-penicillamine decreases the time until 
incidence of death event by exp(0.3) = 1.34 
times, and the time until incidence of 
transplantation by exp(−0.24) = 0.78  times. 
However, its effect on the time until incidence of 
both events is not significant. Similarly, for 
bilirubin it can be said that for each unit increase 
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in the logarithm of serum bilirubin, the time until 
incidence of death event decreases by exp(−0.74) = .47  times, and time until 
transplantation is shortened by exp(−0.55) =.57 times. Comparing these two interpretations, it 
can be said that in the patients suffering from 
biliary cirrhosis, each unit reduction in the 
logarithm of serum bilirubin increases the time 
until death and transplantation by (1/0.47)= 2.12 
and (1/0.57) = 1.57  times, respectively. In 
contrast, for each unit increase in the logarithm of 
serum bilirubin, the probability of death event at 
any short time interval increases by 1.76 times, 
and for transplantation, it grows by 1.41 times. It 
is observed that understanding the effect of 
variable under AFT assumption is easier. 

Conclusion 
The results of this study indicated that the 

relationship between coefficients of Weibull 
distribution under two modeling also holds true in 
cause-specific hazard models. It was also 
observed that if AFT assumption holds in cause-
specific survival functions, interpretation of 
coefficients can be accomplished on the time until 
incidence of each of the events. 
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