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Background & Aim: The bootstrap is a method that resample from the original data set.  
There are the wide ranges of bootstrap application for estimating the prediction error rate. 
We compare some bootstrap methods for estimating prediction error in classification and 
choose the best method for the microarray leukemia classification. 
Methods & Materials: The sample consist of n=38 patients with acute lymphoblastic 
leukemia (ALL) and acute myeloid leukemia (AML) with p=4120 genes that n<<p from an 
existing database. We carried out following steps. (1) Resample from the original sample. 
(2) Divide the sample to two sets, learning set and test set by 3-fold cross validation. (3) 
Train 1NN, CART and DLDA classifiers and compute its misclassification error by 
comparing the predicted class of the remaining samples with the true class. (4) Average the 
errors on B bootstrap samples. 
Results: Standard deviation, bias and MSE for comparing four bootstrap methods by three 
classifiers were computed. For choosing the best method, we assess a bias-variance trade-
off in the behavior of prediction error estimates. The 0.632+ BT is approximately un-bias 
and has small variability. However, the LOOBT procedure has big variability and is biased. 
Also we provide a table and some figures in the section 4. 
Conclusion: The bias and variance of the prediction error rates have high variability in 
various bootstrap methods. Although the 0.632+ BT is approximately un-bias and has small 
variability, other resampling methods maybe are useful for the microarray classification in 
the different situations. 
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Introduction 
DNA microarray technology is now 

commonly used in cancer research and provides 
gene-expression microarray data for 
classification and prediction patient disease 
outcome (1, 2). Predictive power is related to 
classification methods, learn or test data set and 
resampling techniques and it needs to assess. 
Estimating the accuracy of a classifier is 
important not only to predict its future prediction 
accuracy, but also to choose a classifier from a 
given set (3). An accurate prediction rule helps 
to improve the rates of correct diagnosis and 
proper treatment assignments for cancer patients 

(1). An ina ccurate prediction may lead to false 
findings unless appropriate statistical methods 
are utilized (4). For estimating the final accuracy 
of a classifier, we would like an estimation 
method with low bias and low variance but 
statistically it’s impossible and there is a bias-
variance trade-off in the behavior of prediction 
error estimates (3). In the literature there are 
many studies for estimating prediction error with 
different methods with contradictory results in 
bias, variation and accuracy rates. A microarray 
experiment can monitor expression patterns of 
thousands of genes simultaneously. But due to 
their cost and complexity, such experiments are 
often restricted to a small number of specimens 
(1). Microarray analysis presents a unique 
challenge in statistics which is characterized by a 
small sample size n and a large number p of 
features, often with n<<p (4, 5). Estimation of 
misclassification error has received increasing 
attention in clinical diagnosis and bioinformatics 
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studies, especially in small sample studies with 
microarray data. Current error estimation 
methods are not satisfactory because they either 
have large variability or large bias. While 
accurate and easy-to-implement error estimation 
methods for small samples are desirable and will 
be beneficial (6). Complexity of high-
dimensional microarray data, difficulty of model 
selection, small sample restricted are caused that 
error estimation to be critical to classification 
reported by some studies in the literature. 
Underestimation or overestimation the true 
prediction error was reported in Ordinary BT, 
bootstrap cross validation (BTCV), leave-one-
out bootstrap (LOOBT) and other bootstrap 
methods (7-10). Comparison of bootstrap 
methods maybe useful to finding sources of 
biasness or variability in usual error estimators 
on microarray data.  

There are two major acute leukemia classes, 
acute myeloid leukemia (AML) and acute 
lymphoblastic leukemia (ALL). Acute leukemia 
progress quickly, and can lead to death of a 
patient within months when not treated. Medical 
treatment of patients will vary depending on the 
leukemia class. Thus, knowledge of the leukemia 
class is very important information for doctors to 
predict cancer type and correctly treat patients 
(11, 12).   

In this study was implemented some existing 
methods for estimating the prediction error in 
classifying microarray leukemia patients data 
where the number of genes greatly exceeds the 
number of specimens.  

Methods  
In a microarray classification, we observe  

x_i=(t_i,y_i) , i=1,…,n , on n independent 
subjects, where t_i is a p-dimensional vector 
containing the gene expression measurements 
and yi  is the response for subject i. The 
observations can be viewed as realizations of an 
underlying random variable X= (T, Y). With 
dichotomous outcome, the response variable Y 
takes 0 or 1 values distinguishing the two 
classes. A classification model is developed 
based on the information in the learning set for 
predicting of future item class, misclassification 
may occur. The true prediction error (e_n = E ( I 
{Y ≠ r(T, x)}) ) is the probability that the 
prediction model built on the observed data 
x=(x_1,…,x_n) misclassifies a future item 
following the same random mechanism as X (1). 

When the prediction rule is built for the small 
observed data, in microarray experiments, there 
are numerous methods for estimating prediction 
errors rely on partitioning or resampling the 
observed data to construct the learning and test 
sets (1, 7-9). Developing a class predictor in high 
dimensional data, contain two key steps: the 
feature selection and the class prediction step. 
The first step is determining which genes to 
include in the predictor. This is generally called 
‘feature selection’ or, in the context of 
microarray prediction, gene selection. The most 
commonly used approach to feature selection is 
to identify the genes that are differentially 
expressed among the classes when considered 
individually. A t-test or a Mann-Whitney test for 
each gene (4) and selection procedures based on 
the use of criteria such as an F ratio (10) often 
used. The genes that are significantly 
differentially expressed at a specified 
significance level are selected for inclusion in 
the class predictor (4) and were computed in the 
R software in this study. For the second step, 
many algorithms have been used effectively with 
DNA microarray data for class prediction (13). 
The algorithms compared included one nearest 
neighbor classification (1NN) and several 
variants of classification and regression trees 
(CART) and diagonal linear discriminant 
analysis for the reason of continuous variables. 

Bootstrap resampling Methods 
These methods draw bootstrap samples of 

size n repeatedly from the original data x by 
simple random sampling with replacement. Four 
commonly used methods were compared in this 
study. 

Ordinary bootstrap: In this method, a 
prediction rule is built on a bootstrap sample and 
tested on the original sample. Averaging the 
misclassification rates across all bootstrap 
replication gives the ordinary bootstrap 
prediction error estimate. This method has the 
problem that the learning and test sets overlap 
(14). 

Bootstrap cross-validation: This method is 
proposed by Fu et al. (6). The procedure 
generates B bootstrap samples of size n from the 
observed sample and then calculates a LOOCV 
estimate on each bootstrap sample. Averaging 
the B cross-validation estimates gives the 
bootstrap cross-validation estimate for the 
prediction error.  
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Leave-one-out bootstrap: This procedure (5) 
generates a total of B bootstrap samples of size 
n. Each observed specimen is predicted
repeatedly using the bootstrap sample in which 
the particular observation does not appear. In 
this way, the method avoids testing a prediction 
model on the specimens used for constructing 
the model. The leave-one-out bootstrap estimate 
is given by  

݁̂ = 1݊ |ܥ|1
ୀଵ  ݕ}ܫ ≠ ,ݐ൫ݎ ൯}ఢ,∗ݔ  

Where C_i is the collection of bootstrap 
samples not containing observation i and |C_i | is 
the number of such bootstrap samples. 

0.632+ Bootstrap: The 0.632+ bootstrap is 
proposed by Efron and Tibshirani (15) in order 
to reduce the upward bias of the leave-one-out 
bootstrap. The estimate has the form  ݁̂.ଷଶା = ̂݁ݓ + (1 − ୖ̂݁(ݓ ୗ 

Where the weight w is between 0 and 1 and 
e ̂_n^RSB  is the resubstitution estimate. Taking 
w=0.632 gives the 0.632 bootstrap originally 
proposed by Efron (5). When the re-substitution 
error is zero, the 0.632 bootstrap estimates 
become 0.632  e ̂_n^LOOBT .  

Methodology 
This study is a comparative study on existing 

data which was approved by ethics committee of 
Mazandaran University of Medical Sciences in 
Iran. The initial samples consist of n=38 patients 
with acute lymphoblastic leukemia (ALL, 27 
cases) and acute myeloid leukemia (AML, 11 
cases) with p= 4120 genes that n<<p from an 
existing data set (2, 11). The leukemia dataset 
and all details with respect to the methods used 
to collect the data are described in the paper of 
Golub et al (11) and the dataset, available at 
http://www.genome.wi.mit.edu/MPR (11).  

We carried out following steps. (1) Resample 
from the original sample. We draw bootstrap 
samples with replacement B=100 times from 
original sample. Running  50  to 100  bootstrap  
replications  is  often  considered more  than  
adequate (14, 16).  A  bootstrap  sample   of  size  
n  consist  roughly  0.632n  distinct  observations  
from  the  original sample (1). (2) Divide the 
sample into two sets, learning set and test set. 

Cross-validation  is   a  statistical  method  of  
evaluating  and  comparing  learning  algorithms  
by  dividing  data into two  segments:  one used  
to  learn  or  train  a  model  and  the  other  used 
to  validate  the  model by 3-fold cross validation 
(17). (3) Train 1NN, CART and DLDA 
classifiers and compute it’s misclassification 
error by comparing the predicted class of the 
remaining samples with the true class. For  class  
discrimination,  we  consider  the  diagonal  
linear  discriminant  analysis (DLDA),  the  one  
nearest  neighbor  with  Euclidean  distance  
(1NN)  and  the  classification  and  regression  
tree  (CART). These algorithms  are  available  
through  built-in  functions  in  the  statistical  
package  R (18). Details  of  these  R  functions  
are  described  in  Molinaro  et  al. (8). (4) 
Average the errors on B bootstrap samples. For  
each  method,  we  report  the average  estimate  
(Est.) and the standard  deviation (STD) as  well  
as  the  averaged  bias  (Bias)  and  mean-
squared  error  (MSE)  with  respect to the ‘true’ 
prediction  error e ̃_n. The ‘true’ prediction error 
e ̃_n is the misclassification rate when a  
prediction  rule  built  on  the  sample  is  tested 
on  those n=38 patients not selected in the 
sample. For choose the best method there is a 
bias-variance trade-off in the behavior of 
prediction error estimates (1) on an existing gene 
database (11). 

Results 
In Table 1, we report the methods  in groups 

with downward  bias,  large  variability  and 
large  upward  bias  and cells with  these  
unfavorable feature are highlighted  in boldface.  

In figure1 has shown the standard deviation 
(STD), averaged bias (Bias) and mean-squared 
error (MSE) for CART classifier. We  first  look  
at  the  outcome  when  the  CART  classifier  is  
used. Both LOOBT and 0.632+ BT estimates 
suffer from downward bias. Also LOOBT and 
Ordinary BT estimation suffer from large 
variability.  

In Figure 2 has shown the standard deviation 
(STD), averaged bias (Bias) and mean-squared 
error (MSE) for 1NN classifier. In 1NN 
classifier, LOOBT and 0.632+ BT have 
downward bias while other methods have 
upward bias. The BTCV estimate has small bias 
and small variability so this method performs 
well in term of bias, STD and MSE. 
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In classification with DLDA, all estimates 
have downward bias.  BTCV and LOOBT 
estimates have biggest variability (Figure 3).  

With  respect  to  bias-variance  trade-off  in  the  
behavior  of  prediction  error  estimates  0.632+ 
BT  performs  well.  

Table 1. The average estimate (Est.) standard deviation (STD), averaged bias (Bias) and mean-squared error (MSE) for 
classifiers 
Classifier Prediction error 

estimation methods 
Est. STD Bias MSE 

CART BTCV 0.291 0.073 0.028 0.006 
LOOBT 0.220 0.103 -0.042 0.012 

0.632+ BT 0.180 0.077 -0.082 0.012 
Ordinary BT 0.299 0.101 0.155 0.034 

DLDA BTCV 0.293 0.105 -0.024 0.011 
LOOBT 0.311 0.168 -0.006 0.028 

0.632+ BT 0.313 0.077 -0.004 0.006 
Ordinary BT 0.263 0.059 -0.055 0.006 

1NN BTCV 0.403 0.122 0.113 0.027 
LOOBT 0.292 0.146 -0.082 0.028 

0.632+ BT 0.335 0.116 -0.039 0.014 
Ordinary BT 0.413 0.141 0.152 0.043 

Figure 1. The standard deviation (STD), averaged bias (Bias), and mean square error (MSE) for CART classifier 

Figure 2. The standard deviation (STD), averaged bias (Bias), and mean square error (MSE) for 1NN classifier 

Figure 3. The standard deviation (STD), averaged bias (Bias), and mean square error (MSE) for DLDA classifier 
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Discussion 
This study results show that LOOBT has 

large variability in all classifiers. Large 
variability of Ordinary BT error estimators in 
CART and 1NN classifiers is observed. Also 
BTCV has large variability in DLDA and 0.632+ 
BT often has small variability in all classifiers. 
The results given in the present study are showed 
that the comparison between bootstrap methods 
for estimating of prediction error in various 
algorithms is not straightforward. Complexity of 
high-dimensional microarray data, difficulty of 
model selection, small sample restricted are 
caused that error estimation to be critical to 
classification. These are consistent with some 
studies in the literature (13-15). Large variability 
may affect to underestimation or overestimation 
the true prediction error in Ordinary BT, BTCV 
and LOOBT. Overlap between the resampled 
learning and test sets cause serious 
underestimation of the prediction error. Such 
overlaps occur, for instance, in the ordinary 
bootstrap procedure and the bootstrap cross-
validation (10). Also for the reason of small 
sample size, the leave-one-out bootstrap estimate 
tends to overestimate the true prediction error (1, 
20). 

For microarray data with n<p, the over fitting 
problem always exists and the re-substitution 
error estimate is often close to zero. The 0.632+ 
bootstrap tends to put too much weight on the 
leave-one-out bootstrap estimate in this situation 
(1). Our study shows that in all classifiers, 
0.632+BT estimate is approximately un-bias and 
has small variability. The 0.632+ BT performs 
well with respect to other methods. These results 
in this study are consistent with the more recent 
0.632+ bootstrap error estimator attempts to set 
the weight adaptively vs a fixed 0.632 weight 
(16). For instance Vu T et al (19) showed that 
required weight for unbiasedness can deviate 
significantly from the constant 0.632 weight, 
depending on the sample size and Bayes error 
for the finite sample problem in the case of 
linear discriminant analysis under Gaussian 
populations. Dougherty ER et al reported the 
generally these error estimators have poor 
performance and much greater effort needs to be 
focus on error estimators (20). In this leukemia 
data set the diagonal quadratic discriminant 
analysis as a non-linear model may improves the 
system performance in classification with small 
number of genes (21). A lot of studies have 

reported gene selection methods and statistical 
methods for interpreting pattern and classifying 
of leukemia disease (12). The optimistic bias 
induced by optimal gene selection and optimal 
selection of the classification method was 
quantified in a study (22) and showed that some 
classifier such as KNN should be combined with 
variable selection, but DLDA can technically be 
applied to data with n<<p, usually perform better 
on a reduced subset of relevant genes. 

The focus in this article was on the error 
estimate rates by four bootstrap methods in the 
three selected classifier methods. For the 
avoiding of complexity in high-dimensional 
microarray data and difficulty of model 
selection, real well-known data were used. With 
respect to presence of bias and variability 
differences for estimating the prediction error in 
a well-known leukemia data, we conclude that 
the behavior of 0.632+BT is much greater 
balance than other methods in a bias-variance 
trade-off. 

Conclusion 
In all classifiers, LOOBT estimate has 

biggest variability and 0.632+BT estimate is 
approximately un-bias and has small variability. 
The 0.632+ BT performs well with respect to 
other methods. 
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