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Background & Aim: In last three decades or so, an extensive research works has appeared 
in the literature on the theory of statistical distributions. The Weibull distribution is a very 
popular model, and has been extensively used over the past decades for modelling data in 
reliability, engineering and biological studies.               
Methods & Materials: First, we obtain some of important statistical and reliability 
characteristics of the new model, and then the estimation of the parameters of proposed 
model is studied through two views of Bayesian and classic statistics. 
Results: We show that the new distribution has the ability to fit into complete and censored 
real data. In the application section, we show the superiority of the proposed model to some 
common statistical distributions. 
Conclusion: In this paper, we have proposed a new transformed Weibull distribution, 
denoted by TWD. It is investigated that the new model has increasing, decreasing and 
bathtub shape hazard functions. We provide the comprehensive Bayesian and maximum 
likelihood estimation procedures for complete and right censored real observations. 
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Introduction 
In last three decades or so, an extensive 

research works has appeared in the literature on 
the theory of statistical distributions. The 
Weibull distribution is a very popular model, and 
has been extensively used over the past decades 
for modelling data in reliability, engineering and 
biological studies. Motivated by engineering 
applications, Weibull (1939), a Swedish 
physicist, suggested a distribution that has 
proved to be of seminal importance in reliability. 
The corresponding survival function is given by 
the equation 	ܨത(ݔ) = exp൫−ݔߣఉ൯	, ݔ > 0	, 

with parameters ߚ	, ߣ > 0. 
For many researchers, the Weibull 

distribution is of great importance, and therefore 

various generalizations of this distribution are 
presented. 

In the present paper, we introduce a new 
model based on The Weibull Distribution (ܹܶܦ)	and provide a comprehensive 
description of some mathematical properties 
with the hope that it will attract wider 
applications in reliability, engineering and in 
other areas of research. In addition, we estimate 
the parameters of proposed model from two 
views of classic and Bayesian inferential 
statistics. The interesting ܹܶܦ distribution has 
several desirable properties, especially it has 
closed relations with Weighted Exponential 
(WE) and Weighted Weibull (WW) 
distributions. The class of weighted exponential 
distribution was introduced in the seminal paper 
by Gupta and Kundu (2009) and have received a 
great deal of attention in recent years. Weighted 
exponential distribution denoted by	ܹߣ)ܧ,  (ߙ
has probability density function with PDF ݂(ݔ, ,ߙ (ߣ = ఈାଵఈ ఒ௫൫1ି݁ߣ − ݁ିఒఈ௫൯	,			(1) 

where ݔ > 0	, ߙ > 0		 and		ߣ > 0	. Here ߙ 
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and ߣ are the shape and scale parameters, 
respectively. 

A random variable ܺ is said to have weighted 
Weibull distribution, denoted by	ܹܹ(ߙ, ,ߚ  if ,(ߣ
its probability density function (PDF) is given as ݂(ݔ, ,ߙ ,ߚ (ߣ = ఈାଵఈ ఉିଵ݁ିఒ௫ഁݔߚߣ ቀ1 − ݁ିఒఈ௫ഁቁ,				 		(2) 

where ݔ > 0	, ߙ > 0	, ߚ > 0			 and		ߣ > 0	. 
Here ߙ,  are the shape and scale ߣ and 	ߚ
parameters, respectively. See Kharazmi (2016). 

 Our new proposed model provides more 
flexibility to fitting censored and uncensored 
survival data in the real applications. For 
illustrative purposes we use two real data sets, 
and it is observed that ܹܶܦ provides better fit 
than WE model and Weibull distributions. 

Methods 
In this section, we introduce the definition of 

the new transformed Weibull distribution 
denoted by 	ܹܶߙ)ܦ, ,ߚ  and also two (ߣ
stochastic representations are given here. 

Definition 1. A random variable ܺ is said to 
have a new transformed Weibull distribution ܹܶߙ)ܦ, ,ߚ ߙ with shape parameters ,(ߣ >0, ߚ > 0	 and scale parameter	ߣ > 0 , if the PDF 
of		ܺ is given as following ݂(ݔ, ,ߙ ,ߚ (ߣ = ఈାଵఈ ఉିଵ݁ିఒ௫ഁݔߚଶߣ ൬ݔఉ −ଵఈఒ ቀ1 − ݁ିఒఈ௫ഁቁ൰ , ߙ > 0, ,ߚ ߣ > 0	, ݔ > 0.					(3) 

Figure 1 shows the PDF of the TWD 
distribution for selected values of parameters. 

In the next, we explore the relation between 
proposed model (3) with WE and WW models 
considered in (1) and (2), respectively. 
Representation1 shows the connection between 

proposed model and WE distribution and 
representation 2 shows the connection between 
proposed model and WW distribution. 

Representation 1. Suppose that ܷ and ܸ be 
two independent random variables as ܷ ∼WE(ߙ, ܸ and  (ߣ ∼ exp(ߣ) then the transformed 
variable ܺ = ඥ(ܷ + ܸ)ഁ ,  

has the PDF with (3). 
Representation 2. The TWD distribution can 

be stated as mixtures of weighted Weibull 
distribution and length biased Weibull as 
following ݂(ݔ, ,ߙ ,ߚ (ߣ = ߣ ݂భ(ݔ, ,ߙ ,ߚ (ߣ +(1 − (ߣ ݂మ(ݔ, ,ߙ ,ߚ ,(ߣ (4) 

where ߣ = ఈାଵఈ  and ଵܺ and ܺଶ have length 
biased Weibull ܹܤܮ	ߙ), ,ߚ  an weighted (ߣ
Weibull ܹܹ(ߙ, ,ߚ  .respectively ,(ߣ

Remark. Both above stochastic 
representations can be used to generate random 
sample from TWD distribution. Note that the 
simplest way to generate WTD random number 
is to use the stochastic representation 1. 

In the next, we obtain the CDF of TWD 
distribution based on the representation 2 as ܨ(ݔ, ,ߙ ,ߚ (ߣ = ,ݔ)ଵܨߣ ,ߚ (ߣ + (1− ,ݔ)ଶܨ(ߣ ,ߙ ,ߚ  (ߣ

where ܨଵ(ݔ, ,ߚ    is (ߣ

and ܨଶ(ݔ, ,ߙ ,ߚ ,ݔ)మܨ is (ߣ ,ߙ ,ߚ (ߣ = ߙ + ߙ1 (1 − ݁ିఒ௫ഁ − ߙ1 + 1 (1− ݁ିఒ(ఈାଵ)௫ഁ)). 
In the next, we obtain the survival function 

(SF), moment generating function (MGF), 
hazard function (HF) and order statistics of 
proposed model that is given in (3). Some of the 
most important features and characteristics of a 
distribution can be studied through its moment 
generating function. The moment generating 
function of (3) is immediately written as, ܯ(ݐ) = (௧௫݁)ܧ = (ݐ)்ܯߣ + (1 −   ,(ݐ)ܯ(ߣ

where ܶ~ܹܤܮ	ߙ), ,ߚ ,ߙ)ܹܹ~ܼ  and 	(ߣ ,ߚ  (ߣ
Figure 1. Plots of the PDF function of the TWD 
distribution for some selected values of parameters. 

,ݔ)భܨ ,ߚ (ߣ = 1 − ݁ିఒ௫ഁ −  ఉ݁ିఒ௫ഁݔ
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and  (ݐ)ഁ்ܯ = ( ఒఒି௧)ଶ  and
where  ݐ ∈ ሼݐ	|	ܯ(ݐ) < ∞	}	. 
Now, we can obtain the expectation of ܺ as (ܺ) = ൫ܧଶߣ ଵܺఉ൯ + (1 −  ,(ଶܺ)ܧ(ߣ

Where ଵܺ~ܹܾ݁݅ߚ)݈݈ݑ, 		(ߣ
and 		ܺଶ~ܹܹ(ߙ, ,ߚ  .(ߣ

Survival function: The survival function of 
the TWD distribution is given by ܨ(ݔ, ,ߙ ,ߚ (ߣ = ,ݔ)ଵܨߣ ,ߚ (ߣ + (1 ,ݔ)ଶܨ(ߣ− ,ߙ ,ߚ  ,(ߣ

Where ܨభ(ݔ, ,ߚ (ߣ = ݁ିఒ௫ഁ + ఉ݁ିఒ௫ഁݔ
And ܨమ(ݔ, ,ߙ ,ߚ (ߣ = 1 − ߙ + ߙ1 (1 − ݁ିఒ௫ഁ

− ߙ1 + 1 (1 − ݁ିఒ(ఈାଵ)௫ഁ)). 
The hazard function (HF) of ܺ can be written 

as ݔ)ݎܪ, (ߣ == ఒ(௫)ା(ଵିఒ)ிೋ(௫)ଵି[ఒி(௫)ା(ଵିఒ)ிೋ(௫)],ܶఉ~	2)ܽ݉݉ܽܩ, ,ߙ)ܹܹ~ܼ  and(ߣ ,ߚ  .(ߣ
The hazard rate function allows for 

monotonically increasing, monotonically 
decreasing and upside bathtub shaped hazard 
rates. In Figures 2, 3 and 4, we plotted the 
hazard rate function of the ܹܶܦ distribution in 
three cases for selected values of parameters. 

Here we provide an order statistics result. Let ଵܺ	, 	ܺଶ		, . . . , ܺ	 be a random sample from a ܹܶܦ(ܽ, ,ߚ  order	ℎݐ݅ denote the	and let ܺ: (ߣ
statistic.  

Figure 2. Plots of the hazard rate function of the ܹܶܦ distribution for some selected values of 
parameters (upside-down bathtub shape). 

Figure 3. Plots of the hazard rate function of the ܹܶܦ distribution for some selected values of 
parameters (increasing shape).

Figure 4. Plots of the hazard rate function of the ܹܶܦ distribution for some selected values of 
parameters (decreasing shape). 
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The PDF of ܺ: is given by 

௫݂()(ݔ)= ݊!(݅ − 1)! (݊ − ݅)! ߙ + ߙ1 ఉିଵ݁ିఒ௫ഁݔߚଶߣ ቆݔఉ
− ߣߙ1 ቀ1 − ݁ିఒఈ௫ഁቁቇ × 

൫ܨߣଵ(ݔ, ,ߙ ,ߚ (ߣ + (1 − ,ݔ)ଶܨ(ߣ ,ߙ ,ߚ −൯ିଵ(1(ߣ ,ݔ)ଵܨߣ ,ߙ ,ߚ (ߣ − (1− ,ݔ)ଶܨ(ߣ ,ߙ ,ߚ  ି((ߣ
In the next section, we consider both classic 

and Bayesian inferences for the parameters of ܹܶܦ distribution for complet and censored data 
setting. 

Estimation: In this section, we describe two 
well-known estimation methods, Bayesian and 
maximum likelihood procedures, that considered 
in this paper for estimating the parameters α, β 
and λ of the TWD distribution. In addition, these 
methods are used for complete and right 
censored observations. We consider the case 
when all three parameters α, β and λ are 
unknown. 

Maximum likelihood estimation: The 
maximum likelihood procedure is one of the 
most common methods for obtaining an 
estimator for a unknown parameter in classic 
statistical inference. The likelihood function is a 
function that is written based on the mechanism 
of the occurrence of observations.  

 Complete maximum likelihood:  We obtain 
the normal equations for finding the maximum 
likelihood estimators (MLEs) of parameters in 
complete data setting. 

Suppose ଵܺ, … , ܺ be a random sample from ܹܶߙ)ܦ, ,ߚ  The log-likelihood function based .(ߣ
on the observed sample (ݔଵ, … , (ࣂ)݈ ) isݔ = ln …,ଵݔ)ܮ , = (ࣂ|ݔ ݊(log(ߙ + 1) − log ߙ + logߚ + 2 log  ,(ߣ

∑ߣ− ఉݔ + ∑ log ൬ݔఉ − ଵఒఈ ቀ1 −ୀଵୀଵ݁ିఒఈ௫ഁቁ൰where ࣂ = ,ߙ) ,ߚ  .(ߣ
To find the MLE estimates for the ܹܶܦ 

model parameters, we differentiate the log-
likelihood function and equating the resulting to 0 as follows డడఈ = ݊ ቀ ଵఈାଵ − ଵఈ	ቁ +∑ [ భഀమഊି( భഊഀమାഁഀ)షഊഀೣഁ௫ഁି భഀഊ(ଵିషഊഀೣഁ) ]ୀଵ =0 

డడఉ = ఉ ߣ− ln ݔ ∑ ఉݔ +ୀଵ ∑ (ଵିషഊഀ	ೣഁ)௫ഁ ୪୬௫௫ഁି భഀഊ൬ଵିషഊഀೣഁ൰ ൩ୀଵ = 0  

ߣ߲ܮ߲ = ߣ2݊ −ݔఉ
ୀଵ + ଶߣߙ1 − ൬( ଶߣߙ1 + ߣఉݔ )݁ିఒఈ௫ഁ൰ݔఉ − ߣߙ1 ൫1 − ݁ିఒఈ௫ഁ൯

ୀଵ= 0. 
The MLEs of the unknown parameters cannot 

be obtained explicitly. They have to be obtained 
by solving some numerical methods, like 
Newton-Raphson or Gauss-Newton methods or 
their variants. 

Censored maximum-likelihood: In real life, 
sometimes it is hard to get a complete data set. 
Often with lifetime data, one encounters 
censoring. There are different forms of 
censoring: type ܫ, type ܫܫ, etc. Here, we consider 
the type ܫܫ (right) censored data, the likelihood 
function based on a sample size	݊ is given as ܮ൫ݔ, ,ߜ ൯ߠ =ෑ(݂(ݔ, ఋ(ߠ ቀ1 − ,ݔ൫ܨ ൯ቁଵିఋߠ ,

ୀଵ
where ߜ is a censoring indicator variable, 

that is, ߜ = 1 for an observed survival time and  ߜ = 0 for a right-censored survival time. In the 
case ܹܶܦ distribution the likelihood function 
and the corresponding log-likelihood are given 
as ܮ൫ݔ, ,ߜ ,ߙ ,ߚ ൯ߣ = ∏ (ఈାଵఈ ఉିଵ݁ିఒ௫ഁݔߚଶߣ ൬ݔఉ − ଵఈఒ ቀ1 −ୀଵ݁ିఒఈ௫ഁቁ൰)ఋ൫1 − (ݔ)ଵܨݓ + (1 − ൯ଵିఋ(ݔ)ଶܨ(ݓ
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and 

ℓ = Log ,൫ܺܮ ,ߜ ,ߙ ,ߚ ൯ߣ =δ	log	( ߙ	 + ߙ1 ఉିଵ݁ିఒ௫ഁݔߚଶߣ ቆݔఉ − ߣߙ1 ቀ1 − ݁ିఒఈ௫ഁቁቇ
ୀଵ ) 

+(1 − (ߜ log(1 (ݔ)ଵܨݓ− − (1 − ((ݔ)ଶܨ(ݓ
ୀଵ = ℓଵ + ℓଶ 

AND 

ℓ = Log ,൫ܺܮ ,ߜ ,ߙ ,ߚ ൯ߣ =δ	log	( ߙ	 + ߙ1 ఉିଵ݁ିఒ௫ഁݔߚଶߣ ቆݔఉ − ߣߙ1 ቀ1 − ݁ିఒఈ௫ഁቁቇ
ୀଵ ) 

+(1 − (ߜ log(1 (ݔ)ଵܨݓ− − (1 − ((ݔ)ଶܨ(ݓ
ୀଵ = ℓଵ + ℓଶ 

where ܨభ(ݔ) = 1 − ݁ିఒ௫ഁ − (ݔ)ଶܨ   ,ఉ݁ିఒ௫ഁݔ = ఈାଵఈ (1 − ݁ିఒ௫ഁ − ଵఈାଵ ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁ) 
and ݓ = ఈାଵఈ .  

The normal equations are provided as డℓడఈ = డℓభడఈ + డℓమడఈ=0 

where 

డℓభడఈ = ∑ ୀଵߜ [ ଵఈାଵ − ଵఈ + భഀమഊ(ଵିషഊೣഁ)௫ഁି భഀഊ(ଵିషഊೣഁ)] and 

߲ℓଶ߲ߙ =(1 − )ߜ
ୀଵ × 

[ ଶߙ1 ቀ1 − ݁ିఒ௫ഁ − ఉ݁ିఒ௫ഁቁݔ + ଶߙ) + ସߙߙ2 )(1 − ݁ିఒ௫ഁ) − ସߙߙ2 ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁ1 − ቀߙ + ߙ1 ቁ ൫1 − ݁ିఒ௫ഁ − ఉ݁ିఒ௫ഁ൯ݔ − ߙ1 ߙ] + ߙ1 ቆ1 − ݁ିఒ௫ഁ − ߙ1 + 1 ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁቇ]] + 

(1
ୀଵ− (ߜ [ ଶߙ1 ቀݔߣఉ݁ିఒ(ఈାଵ)௫ഁቁ1 − ቀߙ + ߙ1 ቁ ൫1 − ݁ିఒ௫ഁ − ఉ݁ିఒ௫ഁ൯ݔ − ߙ1 ቈߙ + ߙ1 ቆ1 − ݁ିఒ௫ഁ − ߙ1 + 1 ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁቇ]. 
߲ℓ߲ߚ = ߲ℓଵ߲ߚ + ߲ℓଶ߲ߚ = 0 
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where 

߲ℓଵ߲ߚ =ߜ
ୀଵ ൦1ߚ + log ݔ − ఉݔߣ ln ݔ + ఉݔ ln ݔ − ൬ݔఉߙ ݁ିఒ௫ഁ ln ఉݔ൰ݔ − ߣߙ1 ൫1 − ݁ିఒ௫ഁ൯ ൪ 

and  ߲ℓଶ߲ߚ =(
ୀଵ 1 − (ߜ × 

[ ߙ− + ߙ1 ቀݔߣఉ ln ݔ ݁ିఒ௫ഁ − ఉݔ ln ݔ ݁ିఒ௫ഁ + ଶఉݔߣ ln ݔ ݁ିఒ௫ഁቁ1 − ቀߙ + ߙ1 ቁ ൫1 − ݁ିఒ௫ഁ − ఉ݁ିఒ௫ഁ൯ݔ − ߙ1 ቈߙ + ߙ1 ቆ1 − ݁ିఒ௫ഁ − ߙ1 + 1 ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁቇ] 
-∑ (ୀଵ 1 − (ߜ × 

[ ߙ + ଶߙ1 ఉݔߣ ln ݔ (݁ିఒ௫ഁ − ݁ିఒ(ఈାଵ)௫ഁ)1 − ቀߙ + ߙ1 ቁ ൫1 − ݁ିఒ௫ഁ − ఉ݁ିఒ௫ഁ൯ݔ − ߙ1 ߙ] + ߙ1 ቆ1 − ݁ିఒ௫ഁ − ߙ1 + 1 ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁቇ]]. 
߲ℓ߲ߣ = ߲ℓଵ߲ߣ + ߲ℓଶ߲ߣ = 0 

where 

߲ℓଵ߲ߣ =ߜ
ୀଵ ൦2ߣ − ఉݔ + ଶߣߙ1 − ൬ ଶߣߙ1 ݁ିఒ௫ഁ + ߣߙఉݔ ݁ିఒ௫ഁ൰ݔఉ − ߣߙ1 ൫1 − ݁ିఒ௫ഁ൯ ൪ 

and ߲ℓଶ߲ߣ =(
ୀଵ 1 − (ߜ × 

ێێۏ
ۍێ − ߙ)2 + ߙ(1 ቀݔఉ݁ିఒ௫ഁቁ − ߙ + ଶߙ1 ఉݔ ቀ݁ିఒ௫ഁ − ݁ିఒ(ఈାଵ)௫ഁቁ1 − ቀߙ + ߙ1 ቁ ൫1 − ݁ିఒ௫ഁ − ఉ݁ିఒ௫ഁ൯ݔ − ߙ1 ቈߙ + ߙ1 ቆ1 − ݁ିఒ௫ഁ − ߙ1 + 1 ቀ1 − ݁ିఒ(ఈାଵ)௫ഁቁቇۑۑے

 .ېۑ
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In the case of ܹܶܦ distribution, the estimation 
of parameters can be obtained by numerical 
methods. 

Bayesian inference and Confidence Interval 
for credibility: In Bayesian theory, given the fact 
that, we do not know the actual value of the 
parameter, by choosing an estimator, loss will be 
occurred. This loss can be analyzed and 
expressed by using a function in terms of an 
unknown parameter and its corresponding 
estimator. Four loss functions and the associated 
Bayesian estimators are presented below. See 
Calabria and Polisseni (1996). 

1- Squared error loss function                ܮ ቀ(ߠ)ߛ, ݀൫ݔ൯ቁ = ൫݀൫ݔ൯ − ൯ଶ(ߠ)ߛ
Bayesian estimator:                              ݀൫ݔ൯ =  ൯ݔ|(ߠ)ߛ൫ܧ
2- Absolute value loss function       ܮ ቀ(ߠ)ߛ, ݀൫ݔ൯ቁ = |݀൫ݔ൯ −             |(ߠ)ߛ
Bayesian estimator: 
    ݀൫ݔ൯ =  ൯ݔ|(ߠ)ߛ൫݊ܽ݅݀݁ߊ
3- Linex loss function              ܮ ቀ(ߠ)ߛ, ݀൫ݔ൯ቁ = ቂ݁(ௗ൫௫൯ିఊ(ఏ)− ܿ ቀ݀൫ݔ൯ − ቁ(ߠ)ߛ − 1ቃ 
Bayesian estimator: ݀൫ݔ൯ = − ଵ ൧(ݔ|ఊ(ఏ)ି݁)ܧൣ݈݊
4- Generalized entropy loss function ܮ൫(ߠ)ߛ, ൯(ݔ)݀ = ቈ൬݀(ݔ)(ߠ)ߛ൰ − ܿ	݈݊ ቆ݀(ݔ)(ߠ)ߛቇ − 1 
Bayesian estimator:    ݀൫ܺ൯ = ൫ିߛൣܧ(ߠ)|ݔ൧൯ିభ
Given that the parameters of ܹܶܦ 

distribution are non-negative, independent prior 
distributions is considered for each parameter as 
the following ܽ݉݉ܽܩ~ߣ(ℎ, ݃)  ،	α~ܽ݉݉ܽܩ(ܾ, ,݀)ܽ݉݉ܽܩ~ߚ ، (ܿ ݁) 

where ܾ, ܿ, ݀, ݁, ℎ and ݃ are positive. 
The joint prior density function is formulated 

as follow: ߨ(α, ,ߚ λ) =್()()()  .݁ି(ఒାାఉ)	ିଵߚ	ିଵߙ	ିଵߣ
Bayesian inference for complete data set: 

Suppose ଵܺ, … , ܺ be a random sample from ܹܶߙ)ܦ, ,ߚ  then the posterior distribution ,(ߣ
is given as ߨ∗(α, ,ߚ λ|ݔ) ,α)ߨ ∝ ,ߚ λ)݂൫ݔ, α, ,ߚ λ൯ 
then, it results that ߨ∗൫α, ,ߚ λหݔ൯ 

= ݁ି(ఒାାఉ)	ିଵߚ	ܽିଵ	ିଵߣ ∏ ൭ߙ + ߙ1 ఉିଵ݁ିఒ௫ഁݔߚଶߣ ቆݔఉ − ߣߙ1 ቀ1 − ݁ିఒఈ௫ഁቁቇ൱ఋୀଵ ܦ

× ∏ (௫ഁି భഀഊቀଵିషഊഀೣഁቁ)సభ  . 

where ܦ is determined from the following 
formula: ܦ
= න න න ߙෑ(݁ߚ+ܿܽ+ߣ݃)−݁	1−ܿߚ	ܾܽ−1	ℎ−1ߣ + ߙ1 ߚ݅ݔߣ−1݁−ߚ݅ݔߚ2ߣ ቆ݊ߚ݅ݔ

݅=1
∞

0
∞

0
∞

0
− ߣߙ1 ൫1 − ൯ቇߚ݅ݔߙߣ−݁  .ߣ݀	ߚ݀	ܽ݀

The Bayesian estimators for each parameter 
of the ܹܶܦ distribution under the above-
mentioned loss function are not explicit. 
Consequently, simulation of the posterior 
distributions is feasible through using the 
MCMC algorithms such as Gibbs sampling 
method and Metropolis-Hastings algorithm and 
then the associated Bayesian estimators and 
Bayesian credible confidence interval are 
calculated. The Bayesian estimators for the 
parameters ߙ, ,ߚ  ,መߣ ,መߚ ,are represented by αෝ ߣ
respectively 

4.2.2. Bayesian inference for right censored 
data 

Suppose ( ଵܺ, ,(ଵߜ … , (ܺ,  ) be a rightߜ
censored random sample from ܹܶߙ)ܦ, ,ߚ  ,(ߣ
then the posterior distribution is given as ߨ∗(α, ,ߚ λ|ݔ, (ߜ ,α)ߨ ∝ ,ߚ λ)݂൫ݔ, ,ߜ α, ,ߚ λ൯ 

then, it results that ߨ∗൫α, ,ߚ λหݔ, = ൯ߜ ݁ି(ఒାାఉ)	ିଵߚ	ܽିଵ	ିଵߣ ∏ ߙ + ߙ1 ×ܦఉିଵ݁ିఒ௫ഁୀଵݔߚଶߣ ∏ ൫1 − (ݔ)ଵܨݓ + (1 − ൯ଵିఋୀଵ(ݔ)ଶܨ(ݓ ܦ . 
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where ܦ is determined from the following 
formula: ܦ = න න න ݁ି(ఒାାఉ)ஶ	ିଵߚ	ܽିଵ	ିଵߣ	]


ஶ


ஶ
  

×ෑ൭ߙ + ߙ1 ఉିଵ݁ିఒ௫ഁݔߚଶߣ ቆݔఉ
ୀଵ − ߣߙ1 ቀ1 − ݁ିఒఈ௫ഁቁቇ൱ఋ
×ෑ൫1 − (ݔ)ଵܨݓ

ୀଵ + (1− ߣ݀	ߚ݀	ܽ݀[൯ଵିఋ(ݔ)ଶܨ(ݓ
Analogous previous subsection, we use the 

MCMC algorithms such as Gibbs sampling 
method and Metropolis-Hastings algorithm and 
then the associated Bayesian estimators and 
Bayesian credible confidence interval are 
calculated. 

Results 
In this section, we illustrate the usefulness of 

the ܹܶܦ distribution. We fit proposed 
distribution to real data sets in complete and 
censored cases by ML method and compare the 
results with Weibull and generalized exponential 
(GE) with respective densities 

ௐ݂௨(ݔ) = ఉߣߚ ݔ							,ഁఉିଵ݁ି(௫ఒ)ݔ ≥ 0, 		݂ீ ா(ݔ) = ఒ௫(1ି݁ߣߙ − ݁ିఒ௫)ఈିଵ,						ݔ ≥ 0	, 
Furthermore, in this section, we provide 

Bayesian estimation analysis of parameters of ܹܶܦ	for two real data sets.  
Censored data set: Meeker and Escobar 

(2014) represented observed lifetimes of 30 
devices that includes eight censored 
observations.  

2  10  13  23  23  28  30  65  80  88 106  143  
147  173  181  212  245  247  261  266  275  293  
300+ 300+ 300+ 300+ 300+ 300+ 300+  
300+.  

The + sign indicates right-ensured 
observations. 

Complete data set: The data set has been 

obtained from Bader and Priest (1982), and it 
representsthe strength for the single carbon fibers 
and impregnated 1000-carbon fiber tows, 
measured in GPa. We report the data of single 
carbon fiber tested at gauge length 1mm. The 
data are presented below:  

2.247 2.64 2.908 3.099 3.126 3.245 3.328 
3.355 3.383 3.572 3.581 3.681 3.726 3.727 
3.728 3.783 3.785 3.786 3.896 3.912 3.964 4.05 
4.063 4.082 4.111 4.118 4.141 4.246 4.251 
4.262 4.326 4.402 4.457 4.466 4.519 4.542 
4.555 4.614 4.632 4.634 4.636 4.678 4.698 
4.738 4.832 4.924 5.043 5.099 5.134 5.359 
5.473 5.571 5.684 5.721 5.998 6.06 

Before analyzing this data set, we use the 
scaled-TTT plot to verifiy our model validity,  

see Aarset (1987). It allows to identify the 
shape of hazard function graphically. We 
provide the empirical  scaled-TTT plot  of  
above  data set. Fig. 5. Shows the scaled-TTT 
plot is concave. It indicates that the hazard 
function is increasing; therefore it verifies our 
model validity.  

Analysis results for censored data set 
Here, we fit the ܹܶܦ distribution to the 

censored data set. Table 1 shows the MLEs of 
parameters, log-likelihood, Akaike information 
criterion (AIC) and Bayesian Akaike 
information criterion (BIC) for censored data set.  

Analysis results for complete data set 

Figure 5. Scaled-TTT plot of the strength for the 
single carbon fibers. 

Table 1. The MLEs of parameters for lifetimes of devices data. 
Model MLEs of parameters Log-likelihood AIC BIC 
TWD ߙො መߚ ,10.872= = 0.5203, መߣ =0.1281673 -143.096 292.1921 296.3957 
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Here, we fit the ܹܶܦ distribution to the 
complete data set and compare it with the 
generalized exponential and Weibull densities. 
Table 2 includes the MLE’s of parameters, 
Kolmogorov-Smirnov (K-S) distance between 
the empirical distribution and the fitted model, 
its corresponding p-value, log-likelihood and 
Akaike information criterion (AIC) for the real 
data set. The selection criterion is that the lowest ܥܫܣ and ܭ − ܵ statistic corresponding to the best 
fitted model. The ܹܶܦ distribution provides the 
best fit for the data set as it has lower AIC and 
K-S statistic than the other competitor models. 
The histogram of data set, fitted pdf of the TWD 
distribution and fitted pdfs of other competitor 

distributions for the real data set are plotted in 
Figure 6. Also, the plots of empirical and fitted 
cdfs functions, P-P plots and Q-Q plots for the 
TWD and other fitted distributions are displayed 
in Figure 6. These plots also support the results 
in Table 2.  

Bayesian analysis results 
In this section, the numerical analyzes of 

Bayesian estimators are presented for the data 
sets that described in the beginning of section 5. 
These estimators are obtained for both complete 
and censored data under the four loss functions 
that considered in subsection 4.2. 

a set 

Table 2. The MLEs of parameters for Guinea pigs’ data 
Model MLEs of parameters Log-likelihood AIC KS (P-value) 
TWD ߙො መߚ	 ,0.276= =3.138, መߣ =0.026 -67.91 141.82 0.067 (0.951) 
Weibull ߚመ =5.705, መߣ = 29.514 -68.93 141.91 0.090 (0.717) 
GE ߙො = 1.325, መߣ =0.043 -71.77 147.56 0.095 (0.655) 

Figure 6. Histogram and fitted density plots, the plots of empirical and fitted ݂ܿ݀ݏ, P-P plots and Q-Q plots for the real 
strength of the single carbon fibers data. 
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Bayesian analysis results for complete and 
right censored data set 

Table 3 is devoted to the numerical results of 
the Bayesian estimations for the complete data 
set. This table shows the Bayesian estimator and 
95% credible and highest posterior density 
(HPD) intervals for each parameter of proposed 

new model	ܹܶܦ. In addition, the maximum 
likelihood estimator and corresponding 
asymptotic confidence intervals are calculated in 
order to compare with corresponding Bayesian 
intervals. Plots of history (Trace plot) of 
posterior samples, autocorrelation function (acf) 
plots of posterior samples and  histogram of 

Table 3. Bayesian estimation of parameters for complete data set 

Mle and 
confidence 

interval 

ࢼ ෝࢻ ࣅ
0.276 3.138 0.026 
(0 ,10) (2.196,4.07) (0 , 0.1204) 

Bayesian estimation under the squared loss function 

Bayesian estimation 
and 

HPD and credible 
intervals 

					 ොܽ ߚመ መߣ
0.2046957 3.551725 0.01104583 

Bayesian estimation under the absolute value loss function 					 ොܽ ߚመ መߣ
0.2033 3.538 0.009 

Bayesian estimation under the Linex loss function for ܿ = 3 ොܽ ߚመ መߣ
0.2046656 3.421548 0.0110 

Bayesian estimation under the Generalized entropy loss function for  ܿ = 3 				 ොܽ ߚመ መߣ
0.007 0.2045086 3.499393 

HPD CI 

(0.2013, 0.207) (3.324, 3.778) (0.007, 0.0142) 

Crediable CI 
(0.2, 0.2139) (3.078, 4.235) (0.0215, 0.003) 

Figure 7. Plots of  history of posterior samples of each parameter of ܹܶܦ distribution for complete data set. 
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posterior samples of each parameter of ܹܶܦ 
distribution provided in Figure 7, 8 and 9 
respectively. These figures show that the 
simulation processes of Gibbs algorithm has 
been of good quality.  

Bayesian analysis results right censored 

data set 
The results of this section are similar to the 

previous one, with the difference that the 
Bayesian analysis for censored data is carried 
out. Table 4 is devoted to the numerical results 
of the Bayesian estimations for the censored data 
set. This table shows the Bayesian estimator and 

Figure 8. ACF plots of posterior samples of each parameter of ܹܶܦ distribution for complete data set. 

Figure 9. Histogram of posterior samples of each parameterof ܹܶܦ distribution for complete data set. 
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95% credible and HPD intervals provided for 
each parameter of proposed ܹܶܦ model.  

In addition, the maximum likelihood 
estimator and corresponding asymptotic 
confidence intervals are calculated in order to 
compare with corresponding Bayesian intervals. 
Plots of history of posterior samples, acf plots of 
posterior samples and histogram of posterior 

samples of each parameter of ܹܶܦ distribution 
provided in Figures 10, 11 and 12 respectively. 
These figures show that the simulation processes 
of Gibbs algorithm has been of good quality. 

Conclusion 
In this paper, we have proposed a new 

transformed Weibull distribution, denoted by ܹܶܦ. It is investigated that the new model has 

Table 4. Bayesian estimation of parameters for the censored data set 

Mle and 
confidence 
interval 

ࢼ ෝࢻ ࣅ
10.8718620 0.5203 0.1281673 
(0 , 64.26) (0.283, 0.757369) (0 ,  0.3094049) 

Bayesian estimation under the squared loss function 

Bayesian estimation 
and 
HPD and credible 
intervals 

					 ොܽ ߚመ መߣ
10.38368 0.5612756 0.2566403 

Bayesian estimation under the absolute value loss function 					 ොܽ ߚመ መߣ
10.32 0.5559 0.2458 

Bayesian estimation under the Linex loss function for ܿ = 3 ොܽ ߚመ መߣ
9.667699 0.5536759 0.2435577 

Bayesian estimation under the Generalized entropy loss function for  ܿ = 3 				 ොܽ ߚመ መߣ
10.24125 0.5430148 0.1830114 

HPD CI 
( 9.62675, 11.12000) ( 0.5120, 0.6071) ( 0.186300, 0.315225) 

Crediable CI 
(9.008, 11.820) (0.4277, 0.7088) (0.08629, 0.44410) 

Figure 10. Plots of  history of posterior samples of each parameter of ܹܶܦ distribution for censored data set. 
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increasing, decreasing and bathtub shape hazard 
functions. We provide the comprehensive 
Bayesian and maximum likelihood estimation 
procedures for complete and right censored real 
observations.  

Graphically, the plots of Gibbs algorithm are 

provided for sampling of the posterior 
distributions of parameters, and these plots 
confirm the numerical results that given in 
tables. 

Figure 11. ACF plots of posterior samples of each parameter of ܹܶܦ distribution for censored data set. 

Figure 12. Histogram of posterior samples of each parameter of ܹܶܦ distribution for censored data set. 
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