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Background & Aim: Mixed Poisson and mixed negative binomial distributions have been 
considered as alternatives for fitting count data with over-dispersion. This study introduces 
a new discrete distribution which is a weighted version of Poisson-Lindley distribution. 
Methods & Materials: The weighted distribution is obtained using the negative binomial 
weight function and can be fitted to count data with over-dispersion. The p.m.f., p.g.f. and 
simulation procedure of the new weighted distribution, namely weighted negative binomial-
Poisson-Lindley (WNBPL), are provided. The maximum likelihood method for parameters 
estimation is also presented.  
Results: The WNBPL distribution is fitted to several datasets, related to genetics and 
compared with the Poison distribution. The goodness of fit test shows that the WNBPL can 
be a useful tool for modeling genetics datasets.  
Conclusion: This paper introduces a new weighted Poisson-Lindley distribution which is 
obtained using negative binomial weight function and can be used for fitting over-dispersed 
count data. The p.m.f., p.g.f. and simulation procedure are provided for the new weighted 
distribution, namely the weighted negative binomial-Poisson Lindley (WNBPL) to better 
inform parents from possible time of occurrence reflux and treatment strategies. 
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Introduction 
Mixed Poisson and mixed negative binomial 

distributions have been considered as alternatives 
for fitting count data with over-dispersion (1-5). 
Several examples of mixed Poisson and mixed 
negative binomial distributions can be found in 
several statistical literatures (6-23), such as 
negative binomial which is obtained as a mixture 
of Poisson and gamma, Poisson-Lindley (6, 18), 
Poisson-lognormal (1), Poisson-inverse Gaussian 
(24, 25), negative binomial-Pareto (12), negative 
binomial-inverse Gaussian (7), negative binomial-
Lindley (26, 11), Poisson-exponential (2), 
Poisson-weighted exponential (27), two 
parameter Poisson-Lindley (19) and Poisson-
Janardan distributions (20). 

Besides mixed distributions, weighted 
distributions have also been considered as 

alternatives for fitting count data with over-
dispersion, and can be generally obtained by 
multiplying a count distribution with a weight 
function. To derive a new weighted distribution, 
let X be a count random variable with p.m.f. 

)( kXP = , where ,...}2,1,0{0 =∈ Nk  . Let 
( )kω be a non-negative function on 0N  having 

a finite expectation 
 

0
( ( )) ( ) ( )

k
E X k P X kω ω∞

=
= = < ∞ ,  

where the weight function ( )kω  can be used 
to adjust the probability when X k=  occur. 
Thus, the weighted version of r.v . X , which is 
the realization of count r.v. Y , has the following 
p.m.f: 

0
( ) ( )( ) ( ; ) ,

( ( ))
k P X kP Y k p k k N
E X

ωθ
ω

== = = ∈ . (1) 

The most popular weighted count 
distributions are the weighted Poisson (WP) 
distributions which are obtained when the initial 
count r.v., X , follows a Poisson distribution. 
The initial concept of WP distribution was 
introduced in (16), which lead to several more 
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recent and different types of WP distributions 
derived and analyzed in other studies. Examples 
of a more recent WP distributions can be found 
in (3,17, 22). 

In recent studies, some authors used 
particulars weights for deriving new versions of 
weighted distributions. Such examples can be 
found in(13) who used the Poisson weight 
function  1( ; ) ( !)kk e kϕω ϕ ϕ − −= , Kokonendji 
(10) who utilized the binomial weight function 

( ; ) 1 (1 )kkω ϕ ϕ= − − , and the negative 
binomial weight function 

1
( ; )

k
k

k
ϕ

ω ϕ
+ − 

=  
 

 which was applied by 

(8). A more detailed study of weighted 
distributions and weight functions can be found 
in (15). 

The objective of this study is to introduce a 
new discrete weighted distribution based on the 
Poisson-Lindley distribution. The weighted 
distribution, namely the weighted negative 
binomial-Poisson Lindley (WNBPL), is 
weighted with the negative binomial weight 
function and can be used as an alternative for 
fitting count data with over-dispersion. The rest 
of this paper is organized as follows. Section 2 
provides the p.m.f., p.g.f. and simulation 
procedure for the WNBPL. Maximum likelihood 
method for parameters estimation is provided in 
Section 3. Several numerical illustrations are 
provided in Section 4, where the Poisson, and 
WNBPL are fitted to a few datasets. 

Methods  
Weighted Poisson-Lindley Negative Binomial 

(WPLN) 
P.m.f., p.g.f., mean, and variance: Assume 

r.v. λ|Y   follows Poisson distribution with 
p.m.f: 

( | ) , 0,1,2,...
!

yep y y
y

λλλ
−

= = ,            (2) 

and parameter λ  is distributed as Lindley 
with parameter θ : 

2

( ) (1 ) 0
1

f e θλθλ λ λ
θ

−= + >
+

.           (3) 

The Poisson-Lindley (PL) distribution is 
obtained by mixing the Poisson and Lindley 
distributions, and the p.m.f. is: 

2

3
( 2)( ) , 0,1, 2,3...
(1 )y

yp y yθ θ
θ +

+ += =
+

, (4) 

with mean and variance: 
3 2

2 2
2 4 6 2( ) , ( )

( 1) ( 1)
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θ θ θ θ
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. 

Using 
p
11 =+θ  for re-parameterization, the

PL p.m.f. in (4) can be re-written as: 

2( ) (1 ) (1 ) 0,1,2,3,...yp y p p p py y= − + + =  
(5) 

A new discrete distribution can be easily 
obtained by inserting the negative binomial 

weight function  
1

( ; )
r k

k r
k

ω
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=  
 

 and the 

PL p.m.f. (5) into the weighted equation in (1). 
The new distribution, namely the WNBPL, has 
the following p.m.f: 

r 1

2 2
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with mean and variance: 
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The p.g.f. can be obtained in a closed form, 
and is given by: 

12 2

2 2
(1 r ) (1 ) 1( ) ( )

(1 r ) 1

r
Y

Y
p t p t p t pG t E t

p p pt

+
 − + + − −= =  − + − 

.  (8) 

Over-dispersion 
In statistics, cases of over-dispersion can be 

determined by comparing the mean and 
variance, where a distribution is known to be 
over-dispersed if the variance is greater than the 
mean. For WNBPL, the variance and mean can 
be written as: 

2 2 2 2
2

2 2 2 2
(r 1) (r )

(1 ) (1 r )
p p p p

p p p
σ μ + − −− = −

− + −
,  

so that we can determine whether the term 

222

222

)1(
)(
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pprp

−+
−−  is less than one for all values of 
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p and r . If 
222

222

)1(
)(

prp
pprp

−+
−− is less than one, 

then 
2

2

)1(
)1(

p
rp

−
+  is greater than one, indicating that 

μσ −2  is greater than zero. Therefore, the 
variance of WNBPL is greater than the mean, 
and the distribution can be used to handle over-
dispersed count data. 

Figure 1 shows the p.m.f. of WNBPL for 
different values of ( , )r p . The graphs indicate 
that the distribution can be considered as an 
alternative for over-dispersed count data. 

Random data generation 
P.m.f. (6) indicates that ),( prWNBPL  is a 

mixture of negative binomial distributions, 
which can be written as:  

)1,1(
1

)1,(
1

1)( 22

2

22

2

prNB
rpp

rpprNB
rpp

pkp −+
+−

+−
+−

−= . 

Therefore, the ),( prWNBPL  random 
samples can be generated via the weighted 
negative binomial approach. 

We analyze the performance of ML estimates 
of ),( prWNBPL  based on 1000 simulations. 
The average estimators, average mean square 

errors and average standard errors of the ML 
estimates for several sample sizes, n , and 
several initial values ),( pr , are provided in 
Table 1. The results show that increasing the 
sample size is an effective way of decreasing the 
standard errors of parameters. As shown in this 
table, the MSEs decrease when the sample size 
increase, and thus, suggesting the consistency of 
the proposed model. 

Parameter Estimation 
Let nYYY ,...,, 21 be an i.i.d. random sample 

drawn from WNBPL distribution, with observed 
values nkkk ,...,, 21 . The log-likelihood is: 

1 1

2 2

1

ln ( , ) ( , ) ( 1) ln(1 ) ln ln(1 )

1
ln(1 )

n n

i i
i i

n
i

i i

L r p r p n r p k p p pk

r k
n p rp

k

= =

=

= = + − + + + +

+ − 
− − + +  

 

 





By partially differentiating the log-likelihood 
with respect to p  and r , we obtained: 

2 2
1

1( , ) ( 1) 2 ( 1)
1 1 1

n
i

i i

kr p n r nk np r
p p p p pk p rp=

+∂ + −= − + + −
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Figure 1. P.m.f. of WNBPLN distribution for different values of ( , )r p
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Klugman et.al (2012) showed that the term 
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Therefore, the partial differentiation 
p
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∂

∂ ),(

can be written in a simpler form, which is: 
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ML estimates )ˆ,ˆ( pr  can be obtained 
numerically using statistical packages such as R 
3.3.1 with nlminb command.  Under regularity 
conditions, the ML estimates )ˆ,ˆ( pr  for 

WNBPL has a bivariate normal distribution with 
mean ),( pr  and variance-covariance matrix 

1[ ( , )]I r p − , where ( , )I r p  is the Fisher 
information matrix, which is given as: 

2 2

2

2 2

2
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p r p
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Results 
Application to Genetic Data 
The Poisson distribution is a tool which 

widely used in modeling count data in many 
areas such as ecology and genetics. But the 
Poisson model has a good fitting on the equi-
dispersion datasets. For the case of the over 
dispersed data, i.e. the data in which the variance 
is greater than the mean, the alternatives 
distributions are used. In this case, the mixed 

Table 1. Average estimates, average MSE and average standard error (1000 simulation) 
Initial values Average estimates Average MSE Average Std 

n r p r̂ p̂ ˆ( )mse r  ˆ( )mse p  ˆ( )se r  ˆ( )se p

50 
0.3 0.1 1.227 0.130 1.773 0.046 0.955 0.213 
0.6 0.6 0.629 0.567 0.105 0.010 0.323 0.094 
0.2 0.8 5.924 0.179 105.247 0.404 8.513 0.147 

75 
0.3 0.1 2.051 0.161 8.413 0.048 2.312 0.211 
0.6 0.6 0.594 0.572 0.062 0.006 0.249 0.076 
0.2 0.8 4.081 0.189 58.593 0.389 6.597 0.131 

100 
0.3 0.1 1.948 0.177 7.543 0.050 2.197 0.210 
0.6 0.6 0.581 0.575 0.041 0.005 0.203 0.066 
0.2 0.8 3.490 0.184 43.061 0.389 5.677 0.118 

125 
0.3 0.1 1.577 0.196 5.541 0.094 .970 0.200 
0.6 0.6 0.567 0.577 0.027 0.004 0.163 0.058 
0.2 0.8 2.864 0.191 31.381 0.382 4.927 0.112 

150 
0.3 0.1 1.402 0.198 4.614 0.044 1.844 0.186 
0.6 0.6 0.555 0.581 0.021 0.003 0.140 0.050 
0.2 0.8 2.694 0.190 27.342 0.382 4.595 0.107 

Table 2. Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin, exposure -60 
Class/Exposure ( |g kgμ ) Observed frequency Poisson WNBPL 

0 413 374 412.9 
1 124 177.4 124.3 
2 42 42.1 41.9 
3 15 6.6 14.4 
4 
5 
6 

5 
0 
2 

0.8 
0.1 
0.0 

4.9 
1.7 
0.9 

Parameters ˆ 0.4742λ = ˆ 0.3207
ˆ 0.7555
p
r

=
=

 

-ln L 582.67 556.18 
AIC 1167.34 1116.36 

chi-square 48.169 0.06 
p-value of chi-square 0.00 0.97 
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Poisson distribution or the sized biased 
distribution can be used for modeling the over 
dispersed datasets. In this section three genetic 
data sets which was used by (21) are given. The 
Poisson and the WNBPL are fitted to the 
datasets and compared using the AIC criteria and 
the goodness of fit test. 

In Table 2-4 the Poisson and the WNBPL are 
fitted to the Mammalian cytogenetic dosimetry 
lesions in rabbit lymphoblast induced by 
streptonigrin for the exposure of ( -60 , -70, -90) 

|g kgμ  respectively which considered by 
Catcheside et al. It can be seen that based on the 
AIC and the goodness of fit test, the WNBPL 
has a better fit compared to the Poisson 
distribution. 

Discussion 
This paper introduces a new weighted 

Poisson-Lindley distribution which is obtained 
using negative binomial weight function and 
can be used for fitting over-dispersed count 
data. The p.m.f., p.g.f. and simulation procedure 
are provided for the new weighted distribution, 
namely the weighted negative binomial-Poisson 

Lindley (WNBPL). The WNBPL ),( pr  can also 
be shown to be equivalent to a mixture of 
negative binomial distributions, and thus, 
allowing the random samples to be generated via 
weighted approach. The estimation procedures 
of WNBPL parameters via the maximum 
likelihood are also shown. For numerical 
illustrations, the WNBPL distribution is fitted to 
three sets of genetic count data, and the results 
are compared to the Poisson distribution. Based 
on chi-square and log likelihood of the fitted 
models, the WNBPL distributions provide 
significant improvements over the Poisson, and 
the WNBPL provide the largest log likelihood 
and the smallest chi-square. Considering the 
straightforward manner of obtaining its MLE 
estimators, the WNBPL can be considered as an 
alternative model for fitting over-dispersed count 
data. 

Conclusion 
To summarize, the proposed method in this 

study is recommended for modeling over-
dispersed count data as an alternative to the 
Poisson and negative binomial distributions.  

Table 3. Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin, exposure -70 
Class/Exposure ( |g kgμ ) Observed frequency Poisson WNBPL 

0 200 172.5 199.2 
1 57 95.4 61.6 
2 30 26.4 23.6 
3 7 4.9 9.3 
4 
5 
6 

4 
0 
2 

0.7 
0.1 
0.0 

3.8 
1.6 
0.9 

Parameters ˆ 0.553λ = ˆ 0.384
ˆ 0.630
p
r

=
=

 

-ln L 323.44 302.67 
AIC 648.88 609.34 

chi-square 29.68 3.82 
p-value of chi-square 0.00 0.15 

Table 4. Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin, exposure -70 
Class/Exposure ( |g kgμ ) Observed frequency Poisson WNBPL 

0 155 127.8 155.3 
1 83 109 80.2 
2 33 46.5 36.9 
3 14 13.2 16.2 
4 
5 
6 

11 
3 
1 

2.8 
0.5 
0.2 

6.9 
2.9 
1.6 

Parameters ˆ 0.853λ = ˆ 1.154
ˆ 0.354
p
r

=
=

 

-ln L 400.46 382.89 
AIC 802.9 769.78 

chi-square 24.97 2.18 
p-value of chi-square 0.00 0.335 
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