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Background & Aim: The sample standard deviation S is the common point estimator of o,
but S is sensitive to the presence of outliers and may not be an efficient estimator of ¢ in
skewed and leptokurtic distributions. Although S has good efficiency in platykurtic and
moderately leptokurtic distributions, its classical inferential methods may perform poorly in
non-normal distributions. The classical confidence interval for ¢ relies on the assumption of
normality of the distribution. In this paper, a performance comparison of six confidence
interval estimates of ¢ is performed under ten distributions that vary in skewness and
kurtosis.

Methods and Material: A Monte Carlo simulation study is conducted under the following
distributions: normal, two contaminated normal, t, Gamma, Uniform, Beta, Laplace,
exponential and y2 with specific parameters. Confidence interval estimates obtained using
the more powerful ranked set sampling (RSS) are compared with the traditional simple
random sampling (SRS) technique. Performance of the confidence intervals is assessed
based on width and coverage probabilities. A real data example representing birth weight of
189 newborns is used for assessment.

Results: It is not surprising that for normal data most of the intervals were close tot he
nominal value especially using RSS. Simulation results indicated generally better
performance of RSS in terms of coverage probability and smaller interval width as sample
size increases, especially for contaminated and heavy-tailed skewed distributions.
Conclusion: Simulation results revealed that the use of RSS improved greatly the coverage
probability. Also, it was found that the interval labeled (III) due to Bonett (2006) had the
best performance in terms of coverage probability over the wide range of distributions
investigated in this paper and would be recommended for use by practitioners. There may
be a need to develop nonparametric intervals that is robust against outliers and heavy-tailed
distributions.
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Introduction

Confidence interval estimation plays an
important part in statistical inference about a
population parameter and evaluating the
accuracy of its estimator. A confidence interval
for a parameter represents a set of plausible
values for that parameter along with a
confidence level. For example, if o is the
standard deviation of a population, then we seek
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two endpoints L, U such that P(L<oc<U) =1-a for
a given level a. The sample standard deviation S
is the common point estimator of o, but S is very
sensitive to the presence of outliers in the data
and may not be an efficient estimator of ¢ in
skewed and leptokurtic distributions. Although S
has good efficiency in platykurtic and
moderately leptokurtic distributions, its classical
inferential methods may perform poorly in non
normal distributions, see Abou-Shawiesh et al.
(1) for a discussion. The classical confidence
interval for o relies on the assumption of
normality of the distribution. This interval is
highly sensitive to the presence of outliers and/or
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departure from normality as demonstrated by
Lehman and Romano (2). As a result, many
researchers attempted to develop an alternative
to the classical interval estimate of o. The key
question is which of those available intervals
work best and under which setting? Hence there
is a need for a comprehensive comparison
between such interval estimates of G.

Abou-Shawiesh et al. (1) performed a
simulation study comparing seven confidence
intervals for ¢ using data from normal, y?, and
Log-Normal distributions. Kittani and Zghoul
(10) introduced two confidence intervals for o
based on the asymptotic distribution of the
average absolute deviation from the median
(AMAD) and mean absolute deviation (MAD)
and compared their performance with the
classical y* interval over a range of distributions.
Hummel et al. (9) compared the performance of
four interval estimates of ¢ for a range of sample
sizes and data generated from a number of
distributions.  Bonnett (5) proposed an
approximate confidence interval for ¢ and
showed that it was near exact under normality
with excellent small sample properties under non
normality and compared its performance with
the classical ¥ interval. Cojbasic and Tomovic
(7) compared the performance of four methods
for estimating confidence interval for the
variance of only the exponential distribution
aiming to remove most of its skewness. Citing
the importance of estimating the kurtosis and its
impact on the performance of the interval
estimate, Burch (6) considered a number of
kurtosis estimators combined with large sample
theory to construct approximate confidence
intervals for ¢ and compared performance of
four interval estimates for ¢ over a range of
distributions.

While these studies introduced new methods
for estimating o, there is a need for a more

comprehensive simulation study comparing
many intervals under a wide range of
distributions. For that reason, six interval

estimates of o were chosen from these studies
and will be compared using data generated from
ten distributions in the current study, making it a
more comprehensive one. Moreover, the more
powerful ranked set sampling (RSS) technique
will be implemented and compared with the
classical simple random sampling (SRS)
technique which makes this study unique in this
regard. The more powerful RSS can be used to
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obtain estimates of p and o in situations where
the variable of interest is too expensive or can't
be easily measured, but can be easily ranked.
Mclntyre (12) was the first to suggest using RSS
to estimate population mean instead of SRS and
the idea was later developed by Takahasi and
Wakimoto (18) using mathematical theory to
support their claim. Stokes (17) proposed an
estimator for the variance of a ranked set sample
data and showed that the estimator is
asymptotically unbiased and asymptotically
more efficient than the sample variance of a
simple random sample of the same number of
observations regardless of presence of errors in
ranking. MacEachern et al. (11) proposed an
alternative estimator for the variance which is
unbiased and more efficient than Stokes's
estimator even when the underlying distribution
is not normal and the ranking of the elements is
not perfect. MacEachern et al. (11) estimator of
o” performs well for small to moderate sample
sizes and is asymptotically equivalent to Stokes
(17) estimator.

In this paper, performance comparison of six
confidence intervals for estimating the
population ¢ using RSS compared with the usual
SRS technique using data from ten distributions
with varying skewness and kurtosis. The
estimator of the variance of a ranked set sample
proposed by MacEachern et al. (11) will be used
in the simulations. The comparison will be based
on coverage probability and intervals width
which seems to be the major factors for
comparison, see Albatineh et al. (3) and Terpstra
and Wang (19) for a discussion.

Methods

Unbiased estimate of u and o using ranked
set sample

Suppose that we are interested in obtaining an
RSS of size n from a population. First, a SRS of
size k observations are selected and rank ordered
on an attribute of interest. The observation that is
determined to be the smallest is the first element
of the RSS and is denoted X;j and the
remaining k-1 units are discarded. A second SRS
of size k is selected from the population and
ranked the same way and the second smallest
observation is selected and denoted Xpyi. In a
similar fashion, X3, Xpt,....Xk1 are selected,
hence X, Xpji,....Xpg1 represent our first
balanced RSS of set size k. To obtain a balanced
RSS of size n=km, the process is repeated m
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Table 1. Balanced RSS with m cycles and set size

k
Cycle 1 | X Xpen | Xpsn Xkt
Cycle 2 | Xpnup  Xpp | Xpp X [k]2
Cycle 3 Xni X[ X313 X[K3
Cycle m | X[1]m X[2]m X[3]m X [km

independent cycles yielding the balanced RSS of
size n shown in Table 1.

The complete balanced RSS with set size &
and m cycles is given by {Xpi: =1, 2,...k
i=1,2,...m}. The term Xpy is called the r-th
judgment order statistic from the i-th cycle. It is
the observation that is judged to be the »-th order
statistic from one of the & sets in the i-th cycle,
see MacEachern et al. (11) for discussion.
Assume that the underlying distribution has
finitt mean p and variance o, Stokes (17)
proposed an estimator of 6> based on RSS given

by
m_k
= om—1 2 2 (X — )" where f1 = o ZZXW

i=l r=1 i=l r=1
(1)
Stokes (17) showed that this estimator is a

biased estimator of o but it is asymptotically
unbiased as either & or m approach . Moreover,

Stokes (17) indicated that the RSS estimator H

has more precision over the sample mean; say Y
obtained using SRS because of independence of
the order statistics composing the ranked set

sample. In fact, the author showed that var ()7 )=

var ('u ). The balanced RSS is used in this paper.
The estimator of the variance of a RSS proposed
by MacEachern et al. (11) will be implemented
in the simulations since it has been shown to
perform very well for small as well as large
ranked set samples, which is an improvement on
Stokes estimator (17). This estimator is given by

& :i((k—l)MSTﬂmk—kH)MSE)

2

where MST (Mean Square Treatment) and
MSE (Mean Square Error) are obtained from an
analysis of variance performed on the ranked set
sample data with the judgment class used as the
factor and are given by
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1 m__k 1 &&E
MST:E a ;(Xr ﬁ;g(‘){[z]l [r]
3)

1 m
(4)

Confidence intervals for ¢
In this section, six widely used confidence
intervals for estimating o are presented.

Exact confidence interval (1)

XXy s X5senns X .
Let "1°?72>73>""">"nbe an independent and

identically distributed random sample from a
normal distribution with finite mean p and
variance 6%, i.e. X~N (y, 6°), then

a
(1*5)

n 152 1
S zz(x —F0 1)
(5)
Therefore,
n—1)8>
P(zz(g) s Szz(l 7)) P(z —( GZ) <
2
(6)
_Li(x[—f)z
where n-1i5 is the sample

variance, Hence, a (1-a)100% exact confidence
interval for the population variance is given by

_ 2 _ 2
P (nz N <02<(n2 DS =l-«
X (17%,1171) (%JH)
(7
2 2
2 &) X a-% <)
where 2" and 2" are the 2°th and

e 2
2 percentile of the 4 distribution with

- 1 degrees of freedom. Taking the square root of
equation (7) gives the (1-0)100% confidence
interval for o, marked (I) in the tabulated
simulations, which is given by

®)
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Robust confidence interval (I1)

X3 X5 X550y X .
Let "1?72>73>°">"n be an independent and

identically distributed random sample from a

distribution function F. For such sample the O
is defined as

Q,=22219{|x,—x; [;i< jsi=1,2,---,m; j =1,2,---,n}
()]

(24 man=l4]
g= /4, and h=| — |+1
where 2)\2 2 and the

symbols (.) represents combination, and [.] is the

4

integer value. The O estimator is the g™ order
n

2j integer point distances. The

value 2.2219 was chosen to make Q" a
consistent estimator of scale for normal data.

statistic of the {

Rousseeuw and Croux (14) derived the factor d,

which makes the quantity 4,9, unbiased
estimator of ¢ for the case of normal distribution.

The authors provided approximate values of d,
for larger values of n which is given by

, if n is odd
d = n+l1.4
! n .
, if n is even
n+3.8
(10)

Let X% Yipe ap independent and
identically distributed random sample of size n
from a continuous distribution. Define the
random variable 7T as

40
O
(11)

where 4,9, is the unbiased estimator of ¢ so
and Croux (14) showed that for large n, the
following asymptotic result holds:
1 02)
o 1.65n

12)

et al. (1), a (1-a)100% robust confidence interval
for o, marked (II) in the tabulated simulations, is

that £(T)=1 for normal distribution. Rousseeuw
T= 4,0, 0 N(l, ! ]:> d o U N[O',
1.65n
Following the development in Abu-Shawiesh
given by
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1.28\n = d,0, 1.28Vn * d,Q,
Z ,+128n " 7, +128Vn
1-= =z
2 2

(13)
Z ,andZ, L)
where 2 2 are the 2 th
percentiles of the standard normal distribution.

(1—%)and(

Bonett confidence interval (111)

X153 XysX35unes X .
Let "1°72°73>"*>"nbe an independent and

identically distributed random sample from a

2

normal distribution, i.e. x,UNu,o ) Mood et
al. (13) indicated that the variance of S can be
expressed as
o'{y,—(n=3)/(n-1)}/n, where y, = u, / o*

where ' is the population fourth central
moment. A variance-stabilizing transformation
for §7 is In (S°) and using the §-method gives

var(In($*) = {y, —(n=3)/(n=1)}/n
(16) found out that
7i=(n=3)/n}/(n=1) improved the small
sample performance of his equal-variance test,

and this small-sample adjustment will be used in
our simulations. To estimate var(ln S°), one

. Shoemaker
using the quantity

needs to estimate Va since it is unknown in
practice.
The Pearson's

7= <ni<x,- —%) <Z (x, - %))’

estimator

tends to have large
negative bias in leptokurtic (heavy tailed)
distributions unless we have a large sample size.
For that reason, Bonett (5) proposed an estimator

for 7+ which is asymptotically equivalent to
Pearson's estimator and is given by

nZn: (x,—m)*
Vo= =

(Z (x, - 7))’

(14)

where m is the trimmed mean with trim-
proportion equals!’ (Nﬁ)‘ Bonett (5) indicated
that this estimator of kurtosis tends to have less
negative bias and smaller coefficient of
variability compared to Pearson's estimator in
symmetric and skewed leptokurtic distributions,
and will be implemented in our simulations.
Bonett (5) proposed the confidence interval
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limits for 6* given by
LCL=exp{ln ¢S* - Z,,SE} and UCL=exp{ln ¢S* +Z,,SE}
(15)
where Z, 1s the two-sided critical value from
the standard normal distribution, the standard
error

SE=\/}74—(n—3)/n}/(n—l), wherec=n/(n-2,,)

and 74 as given in equation (14). Taking the
square root of the endpoints of equation (15)
gives the endpoints of (1-)100% confidence
interval for o which will be marked (III) in the
tabulated simulations.

Large sample normal approximation (IV)
It is well known that the distribution of the
sample variance S° is asymptotically normally

2
distributed with expected value O and variance

(y-Do*/n

of the parent distribution is finite and 7 is the
population kurtosis, see Hummel et. al. (9) and
Arnold (4) for a discussion. Such an asymptotic
distribution gives rise to the (1-0)100%
confidence interval for the variance given by

, provided that the fourth moment

2 2
S <o’ < S

V-1
I_Z]—a/Z\/yT

16)

where 7 is a consistent estimator of the
kurtosis which is unbiased for normal samples

A

and 7 is the corresponding estimate of the

excess kurtosis ( V=3 and 7¢=0 for normal

distribution) given by

N n(n+1) = (X, -x)* 3(n—-1)

re=ym3= (n—l)(n—Z)(n—3),Zl S* (i-2)(n-3)
Taking the square root of equation (16) gives

the (1-a)100% confidence interval for o which

will be marked "IV" in the tabulated simulations.

Adjusting for skewness (V)

Note that for small samples, the distribution
of §? has high skewness. To help adjust for this
skewness, the natural logarithm transformation is
applied to the sample variance. Using the
Cramer & method, /n(S?) will be asymptotically
approximately normally distributed with mean

In(6’) and corresponding variance ( 7. D/n.
Using this transformation, a (1-0)100%
confidence interval for ¢” is given by
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Szexp(—Zla/2 7/—_IJSO'ZSSZexp{ZIM2 7—_1]
n n

A7)

Taking the square root of equation (17) gives
the (1-a)100% confidence interval for ¢ which
will be marked (V) in the tabulated simulations.

Adjusted degrees of freedom (VI)
It is known that the sample variance is a sum
of squares, and for sufficiently large samples, it

2
can be approximated by a X distribution with
an appropriate degrees of freedom which can be
estimated using the matching of moments
method. A similar argument is used by
Shoemaker (16) when approximating the
distribution of a ratio of independent sample
variances. The first two moments of the
distribution of S’ are matched with those of a

2
random variable Yiey, , and then solving for

and c the equations

s’ n-3

o’ =cr, and —(y— ) =2rc?

n n-1 . Mood et. al. (13)
indicated that when sampling from any
distribution with finite first four moments, we

have

n-3

n—1

var(s?) = 2 (-
n
(18)

The unique solution is given by
_ 2n(n—1) _ 2n(n—1)
(n=-)y-n+3 -1y, +2n

C_O'_2 _n—3 _0'_2[ N ZHJ
2n r n-1 2n Ve n-1

(19)

)

rS?

2

Therefore, O
ZZ

as?”, and hence an approximate confidence

interval estimate for the variance is given by

~Q2 ~Q2

ZS <o’ < r;? , wheref=A2—n
Xit-an Kian 7.+2n/(n-1)
(20)

Taking the square root of equation (20) gives

the (1-a)100% confidence interval for ¢ which
will be marked (VI) in the tabulated simulations

is approximately distributed

Results

Confidence interval estimation is one form of
estimation in which an interval of plausible
values of the population parameter of interest is
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given, attached to a confidence level. The most
common criteria for comparing confidence
intervals are coverage probabilities and width. In
simulation studies, it is desired that the coverage
probability be very close to the nominal
confidence level. When the coverage probability
is greater than the nominal confidence level, the
confidence interval is a conservative one and is
considered to be valid, but it leads to confidence
intervals that are wider than they are supposed to
be. A confidence interval is anti-conservative if
it is associated with a coverage probability that is
smaller than the nominal confidence level. Such
a confidence interval is not valid, and it
generally produces confidence intervals shorter
than they need to be.

Simulation Study
It is hard to perform a theoretical comparison

between many confidence intervals; hence a

simulation study will be conducted for such

purpose. A range of random sample sizes: n=20),

30, 50, 100 will be generated from the following

distributions:

1. N(0, 1): Normal distribution with mean zero
and standard deviation one.

2. t(10): t distribution with 10 degrees of
freedom.

3. Beta(3,3): Beta distribution with parameters
shape=3 and scale =3.

4. Laplace(0,1): Laplace distribution (double
exponential) with location parameter p=0 and
scale parameter b=1.

5. CN(0,0.95): Contaminated
distribution

CN(u,1-8)=(1-¢)N(u,0))+¢EN(u,0,)

with p=0, o1=1, 0,=2 and contamination
proportion £E=5%.

6. CN(0,0.90):Contaminated normal distribution

CN(u,1-8)=(1-8)N(u,0,)+EN(u,0,)

with p=0, o=1, 6,=2 and contamination
proportion E=10%.
7. Exp(1): Exponential distribution with rate
parameter A=1.

2 2

8. X ©) . A distribution with 3 degrees of
freedom.

9. U(1,9): Uniform distribution
minimum=1 and maximum=5.

10.Gamma(2,2): Gamma distribution with shape
parameter k=2 and scale parameter 6=2.

normal

with

Using 2000 replications, the simulation error
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for a two-sided 95% confidence interval is

_ %
(A=099*095 _, 40487 ~ 0.49%
2000 . Thus, any

coverage probability between 0.9404 and 0.9596
will be within a set of acceptable values. Of
course a coverage probability higher than 0.9596
will still imply a valid interval but it simply
means that such interval is wider than it is
supposed to be. An interval with coverage
smaller than 0.9404 imply that such interval is
not valid and is shorter than what it is supposed
to be. Given two confidence intervals for ¢ with
roughly the same coverage probability, only then
we will resort to the interval width to choose
which interval is better.

Ten distributions were considered in the
simulations ~ which  represents:  symmetric
distributions  {Normal (0,1)}, heavy-tailed
symmetric distributions {t(10), Laplace (0,1),
CN(0,1,0.95), CN(0,2,0.90)}, light-tailed
symmetric distributions {Beta (3,3), Uniform
(1,5)}, light-tailed skewed  distributions
{Exponential (1)}, and heavy tailed skewed

2
distributions {£ 3) | Gamma (2,2)}. Below is a
summary for the findings for each group of
distributions.

Symmetric Distributions

Since interval (I) is derived under the
assumption of normality, it is not surprising to
see its coverage probability close to the nominal
value using both RSS and SRS for both small
and large sample sizes. Interval (II) achieved
nominal value coverage for sample size >50,
using both RSS and SRS, while intervals (III),
(IV), (V), (VI) achieved coverage probability
closer to nominal value using RSS for sample
sizes <50 and using both RSS and SRS for n>50
except interval (IIT) using SRS.

Heavy-Tailed Symmetric Distributions

For the t-distribution, coverage obtained
using RSS were closer to the 95% nominal target
for intervals (I), (IIT), (IV), and (VI) for n=20,
but for »>50, all intervals except (I) attained
nominal coverage probability. For Laplace
distribution, coverage using RSS were still
higher than SRS, but were closer to nominal
value when n>50 using intervals (III), (IV), and
(VD). For contaminated normal distributions,
coverage using RSS is still higher than SRS, but
got worse for 10% contamination especially for
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Table 2. Estimated coverage probabilities
with data from Normal(0,1),
using RSS and SRS techniques.
with (¥*) represents interval width.

and intervals widths of six confidence intervals
t(10), Beta (3,3), Laplace (0,1) for sample sizes 20,30,50, and 100
The row with (*)represents coverage probability and the row

for ©

Normal (0.1) t(10)
Interval I 11 111 v v VI I 1I 11 v v VI
n=20 n=20
RSS 0967y 0928 0978 0966 0948 0959 | 0.943 0932 0969 0956 0912 0.947
06gz 0796 0779 1158 0656 0744 | 0744 0853 0882 1689 0757 0867
SRS : 0925 0696 0916 0901 0918 | 0927 0912 0535 0922 0875 0911
0950Y 0777 0326 0900 0597 0670 | 0763 0837 028 1275 0721 0818
n=30 n=30
RSS 0.957 0936 0981 0943 0935 0942 | 0917 0922 0963 0936 0.922 0.930
0.543 0613 0637 0628 0508 0547 | 0.606 0659 0765 0898 0.634 0.693
SRS 0951 0921 0659 0933 0928 0940 | 0.906 0907 0470 0922 0900 0916
0540 0.600 0244 0617 0498 0538 | 0603 0.647 0209  0.883 0.626 0.684
n=50 n=50
RSS 0977 0970 0991 0976 0964 0972 | 0926 0949 0979 0965 0.947 0.957
0.404 0459 0483 0459 0407 0426 | 0450 0488 0592 0632 0521 0552
SRS 0951 0943 0622 0943 0941 0945 | 0913 0915 0429 0938 0922 0933
0408 0453  0.177 0431 0388 0405 | 0457 0485 0147 0617 0.502 0.530
n=100 n=100
RSS 0962 0957 0985 0959 0955 0959 | 0914 0920 0974 0950 0.944 0.951
0282 0315 0341 0294 0280 028 | 0315 0336 0428 0398 0368 0378
SRS 0951 0946 0604 0944 0948 0945 | 0.893 0891 0385 0929 0929 0929
0283 0314 0118 0289 0276 0281 | 0316 0334 0097 0391 0362 0372
Beta (3.3) Laplace (0,1)
Interval I il 111 v v VI I 1I 111 v v VI
n=20 n=20
RSS 0.990 0957 0991 0975 0956 0973 | 0.83¢ 0.832 0910  0.933 0.848 0.897
0.128 0.154  0.136 0.149 0.108 0.121 | 0.909 0947 1168 2569 1.033 1204
SRS 0.984 0947  1.000 0927 0923 0937 | 0.825 0.794 0252  0.883 0.829 0.862
0.131 0.152 29.122 0.126 0.098 0.109 | 0937 0939 0224 2406 1.009 1.167
n=30 n=30
RSS 0.983 0951 0984 0947 0947 0955 | 0.832 0.757 0931 0912 0.888 0.905
0.102 0120 0.109 0092 0081 008 | 0.755 0.724 1080 1694 0947 1.061
SRS 0983 0951  1.000 0939 0928 0943 | 0791 0.712 0210  0.898 0.859 0.889
0102 0.118 4634 0090 0079 0085 | 9752 0712 0.153 1691 0932 1044
n=50 n=50
RSS 0.997 0965 0999 0984 0979 0984 | 0.844 0631 0955 0959 0.924 0.941
0.076 0.090 0.081  0.069 0064 0067 | 0563 0.531 0867 1158 0.801 0.868
SRS 0.984 0948 1000 0944 0942 0945 | 0.793 0560 0179 0913 0.892 0.900
0.077 0.089 2055 0065 0061 0063 | 9571 0.526 0103 1150 0.783 0.845
n=100 n=100
RSS 0992 0957 0995 0978 0972 0975 | 0.818 0362 0964 0944 0931 0.936
0.053 0.062  0.057 0.045 0043 0044 | 0398 0363 0651  0.683 0.592 0.617
SRS 0983 0946 1000 0946 0943 0948 | 0.796 0367 0158 0926 0911 0917
0053 0.061 1.007 0.044 0.043 0043 | 0398 0363 0066 0.659 0.576 0.599

larger n. For 5% contamination, intervals (I),
(III), (V), and (VI) did well but only interval
(II) remained closer to nominal value as n
increased. For 10% contamination, interval (III)
has the best coverage but still lower than
nominal value.

Light-Tailed Symmetric Distributions

For Beta distribution, intervals (I) and (III)
always produced wider intervals than supposed
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to be using both RSS and SRS for all sample
sizes considered. Interval (II) produced coverage
very close to nominal value using both RSS and
SRS for all sample sizes. Intervals (IV), (V), and
(VI), although had valid coverage but their
performances were mixed, i.e. closeness to
nominal value depending on the sample size. For
the Uniform distribution, intervals (I), (II), and
(III) produced coverage probability higher than
the nominal value, though valid but wider than
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Table 3. Estimated coverage probabilities

and width of six confidence intervals for o with data from

contaminated normal, exponential (A = 1), and x2(3) distributions  for sample sizes 20,30,50,
and 100 using RSS and SRS techniques. The row with (*) represents coverage probability and the row with

(**) represents interval width.

Contaminated Normal CN(0,1,0.95) Contaminated Normal CN(0,1,0.90)
Interval I 1I 111 v \Y VI I I I v \Y% VI
n=20 n=20
RSS 0.943° 0.906 0.969 0934 0941 0946 | 0.883 0858 0.936 0.877 0919 00904
0.717"° 0825 0.838 1432 0711 0812 | 0.752 0.859 0.895 1524 0.766 0.877
SRS 0.902° 0.884 0.565 0.863 0.893 0.884 | 0.840 0.863 0.476 0.814 0.881 0.856
0.733" 0814 0.303 1.128 0667 0.754 | 0.769 0.847 0.287 1285 0.721 0.818
n=30 n=30
RSS 0.876  0.900 0.964 0.882 0929 0914 | 0.784 0.848 0.899 0.796 0.879 0.843
0.580  0.635 0.727 0914 0.600 0657 | 0.614 0.662 0.791 1.032 0662 0.729
SRS 0.870  0.896 0.489 0.874 0907 0.892 | 0.772 0.835 0.376 0.763 0.856 0.814
0.578 0.630 0.223 0.837 0.578 0.631 0.614  0.660 0.206 0919 0641 0.702
n=50 n=50
RSS 0.891 0.929 0.977 0920 0958 0939 | 0.752 0.866 0.928 0.818 0914 0.864
0.431 0.476 0.558 0.603 0487 0516 | 0456 0493 0.623 0.731 0.554 0.592
SRS 0.851 0.901 0.428 0.867 0915 0.896 | 0.677 0.807 0.274 0.707 0.804 0.752
0437 0473 0.158 0.559 0467 0493 | 0467 0494 0.143 0.666 0.535 0.568
n=100 n=100
RSS 0.791 0912 0.945 0.848 0908 0874 | 0.554 0818 0.810 0652 0.763 0.702
0.302 0.327 0.405 0373 0346 0355 0.320 0.339 0453 0.433 0395 0407
SRS 0.776 0.881 0.354 0.812 0.878 0.851 0.530 0.788 0.173 0.598 0.709 0.652
0302 0325 0.103 0367 0340 0349 | 0322 0339 0.093 0426 0390 0.402
Exponential (L= 1) 7(3)
Interval I 11 111 v \ VI I 11 111 v \Y VI
n=20 n=20
RSS 0.767  0.563 0.839 0874 0.746 0816 | 0.837 0.821 0.884 0.888 0.795 0.854
0.607  0.536 0.767 1684 0666 0774 | 1.548 1514 1.902 4189 1641 1901
SRS 0.735 523 0.513 0.815 0.720 0.768 | 0.810 0.749 0.084 0.834 0.766 0.801
0.627 0.534 0.350 1.623 0.656 0.759 1.578 1.494 0.142 3.559 1.568 1.800
n=30 n=30
RSS 0.749  0.294 0.885 0.887 0.821 0855 | 0.817 0.653 0.912 0.883 0.850 0.870
0.511 0.401 0.750 1376 0660 0746 | 1.296 1.153 1.834 3.183 1594 1.790
SRS 0.738  0.329 0.366 0866 0.815 0838 | 0.796 0.609 0.078 0.862 0.810 0.839
0.516  0.403 0.224 1391 0661 0747 | 1273 1.141 0.095 2.860 1508 1684
n=50 n=50
RSS 0.745 0.05 0912 0917 0.874 0.896 | 0.808 0.396 0.930 0923 0.891 0.906
0392 0.295 0.659 1.204 0620 0.686 | 0.979 0.850 1.546 2230 1436 1.570
SRS 0.722  0.124 0.297 0.884 0.856 0.873 | 0.765 0.398 0.053 0.883 0.862 0.876
0.399  0.297 0.142 0998 0.603 0662 | 0.983 0.846 0.061 1966 1348 1462
n=100 n=100
RSS 0.706  0.001 0.931 0913 0901 0909 | 0.788  0.067 0.951 0933 0915 0921
0.281 0.202 0.526 0.635 0491 0521 | 0.687 0.581 1.166 1270 1.067 1.118
SRS 0.704  0.008 0.253 0913 0.897 0912 | 0.747 0.116 0.056 0910 0.899 0.905
0.281 0.201 0.083 0632 0488 0518 | 0.690 0.580 0.037 1275 1.060 1.111

they should be. Intervals (IV), (V), and (VI) had
coverage closer to nominal value with RSS
performing better than SRS, especially for #<50.

Light-Tailed Skewed Distributions

For the exponential distribution, coverage
was smaller than the nominal value for all
intervals, with best performance by intervals
(IIl) and (IV) especially for n>50. The RSS
produced coverage probability higher than SRS,
although lower than the nominal value.
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Heavy Tailed Skewed Distributions

For  theZ distribution,  the  coverage
probability of intervals (III), (IV), (V), and (VI)
increased with an increase in sample size, while
coverage of (I) and (II) decreased with an
increase in sample size. RSS produced coverage
probability higher than that of SRS. Interval (III)
had the best performance especially for n=100.
The pattern in the Gamma distribution is almost

identical to that of ‘[hefz'2 distribution with
interval (III) as best performer followed by
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Table 4. Estimated coverage probabilities
from Uniform (1,5) and Gamma (2,2) distributions
and SRS techniques.

The row with ( * ) represents

and width of six confidence intervals for ¢ with data

for sample sizes 20,30,50, and 100 using RSS
coverage probability and the row with (*¥*)

represents interval width.
Uniform (1.5) Gamma (2.2)
Interval I 1I I v \Y% VI I II I v A\ VI
n=20 n=20
RSS 0:997"  0.986 0.994 0.940 0.952 0960 | 0.880 0.895 0.921 0910 0.852 0.886
0:781"" 0909  0.744  0.551 0.483 0.530 | 1.834 1877 2233 4398 1924 2222
SRS 0:995"  0.988 0.738 0931 0928 0939 | 0.839 0.822 0.065 0.837 0.784 0.817
0:780""  0.883 0.309 0.528 0.466 0.513 1.866  1.841 0.120 3.805 1.819 2.082
n=30 n=30
RSS 0.997 0.995 0.997 0955 0953 0960 | 0.851 0.818 0.934 0.900 0.860 0.887
0.630 0.725 0.600 0.421 0390 0415 1497 1426 2.043 3.103 1.750 1.952
SRS 0.998 0.995 0.720 0.924 0928 0940 | 0.832 0.772 0.056 0.860 0.841 0.855
0.630 0.715 0.249 0.413 0.383 0.409 1.502 1427 0.082 3.061 1.716 1.908
n=50 n=50
RSS 0.999 0.999 0.998 0983 0977 0.983 0.845 0.664 0.944 0.930 0900 0.917
0.467 0.546 0.444 0.328 0.312 0.324 1.127  1.055 1.682 2303 1.539 1.666
SRS 0.998 0.997 0.770 0949 0945 0954 | 0.816 0.606 0.051 0.902 0.887 0.899
0.472 0.536 0.187 0.305 0.293 0.304 1.149  1.051 0.053 2285 1.524 1.649
n=100 n=100
RSS 1.000 0.999 1.000 0973 0970 0976 | 0.826 0.304 0.962 0.937 0925 0.934
0.326 0.374 0.309 0.212 0208 0.212 | 0.795 0.726 1.270 1.334  1.146 1.195
SRS 0.997 0.998 0.752 0939 0944 0947 | 0.801 0.310 0.043 0.921 0.899 0.908
0.327 0.371 0.129 0.208 0.204 0208 | 0.794 0.721 0.034 1.299 1.127 1.174

intervals (IV) and (VI), respectively.

Real Data Example

The birth weight data used in this example is
obtained from Hosmer and Lemeshow (8),
which was collected from the Baystate Medical
Center in Springfield, Massachusetts (University

of Massachusetts Amherst). In this data, a baby
weighing less than 2500 grams is defined as
"low birth weight" child. Data were collected
from 189 women of which 59 women had low
birth weight babies and 130 women had normal
birth weight babies. For this data, the average
birth weight was 2944.66 grams, with a standard

Table 5. Tests of normality results for the birth weight data

Test of normality Test statistic

P value

Shapiro - Wilk W = 0.9925
Anderson - Darling A= 04157
Cramer - von Mises W = 0.0584
Kolmogorov - Smirnov D = 0.0435

0.4384
0.3301

0.395
0.5169

Table 6. Estimated six confidence intervals for ¢ along with their widths using birth

weight data with sample sizes 25, 50, and 100 selected using RSS and SRS techniques.
I

Interval i il v v VI
RSS n=25
Width (480.7,856.5) (547.6,1031.1) (490.8,838.0) (513.4,821.4) (494.5,766.5) (502.5,795.0)
375.7 4835 3472 308.0 271.9 2924
SRS (531.6,947.2) (592.7,1116.0) (709.2,709.2) (567.1,910.9) (546.0,848.9) (555.1,880.8)
Width 4155 5233 0.001 343.7 302.9 325.7
RSS n=50
Width (525.4,783.8) (577.1,896.1) (508.7,809.4) (531.0,814.0) (514.2,769.3) (523.1,789.0)
258.4 319.0 300.6 282.9 255.1 265.9
SRS (617.5,921.3) (624.6,969.9) (754.2,754.2) (619.4,974.6) (597.9,914.1) (609.4,940.0)
Width 303.7 3453 0.0002 355.1 316.2 330.5
RSS n=100
Width (592.8,784.3) (616.2,839.1) (587.5,791.3) (613.4,760.3) (607.4,750.4) (610.2,755.7)
191.5 2228 203.7 146.8 142.9 1454
SRS (634.7,839.8) (620.0,844.2) (730.1,730.1) (628.6,878.3) (615.3,849.4) (622.5,862.3)
Width 205.0 2242 0.0001 249.6 234.1 239.8
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deviation of 729.02 grams. Four tests of
normality, as shown in Table 5, indicated that
the birth weight data follow a normal
distribution.

Table 6 presents six confidence intervals of ¢
for the birth weight data with samples of size 25,
50, and 100 using RSS and SRS. All intervals
captured, $=729.02, the point estimate of o,
except for the third interval using SRS. Also,
there is a clear pattern of smaller width of the
interval as the sample size increase from 25 to
100. Also, the intervals produced by RSS have
smaller width compared to that of SRS.

Discussion

Parameters' estimation using confidence
intervals is more desirable than merely testing if
the parameter equals a specified value. Interval
estimation gives the practitioners an idea about
the set of plausible values of the parameter with
some confidence. Several papers discussed
estimating ¢ using confidence interval approach,
but few of these studies were comprehensive in
the sense of conducting a comprehensive
simulation study that involves several
distributions, see Abu-Shawiesh et al. (1), Bonett
(5), and Hummel et al. (9) to name a few.
Moreover, none of those studies implemented
the more powerful RSS in estimating ¢. Several
types of distributions including symmetric,
heavy-tailed symmetric, light-tailed symmetric,
light-tailed and heavy tailed skewed were
included. Simulations results revealed that the
type of distribution had some role in reaching
nominal coverage along with the sample size
considered. In general, for non normal
distributions the coverage probability improved
with larger sample size but with RSS intervals
achieved better coverage probability and that is
closer to the nominal value. When the data was
contaminated at 10%, the coverage probability
was affected with interval III having the best
coverage but still lower than nominal value. This

may indicate the need to look for some
nonparametric  interval estimators for o
especially for small » and presence of

contamination or presence of light or heavy
skewness.

Conclusion

In this paper, a simulation study was
conducted to compare six well known
confidence interval estimates for the population
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standard deviation. Data were generated from
ten distributions with varying skewness and
kurtosis and sample sizes 20, 30, 50, and 100 to
capture a wider picture of the performance. A
comparison of ranked set sampling against
simple random sampling in estimating six
confidence intervals for the population standard
deviation is performed. Two main criteria for
comparison were implemented, namely:
coverage probability and confidence interval
width. Simulation results revealed that the use of
RSS improved greatly the coverage probability.
Also, it was found that the interval labeled (III)
due to Bonett (5) had the best performance in
terms of coverage probability over the wide
range of distributions investigated in this paper
and would be recommended for use by
practitioners.
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