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Background & Aim: The sample standard deviation S is the common point estimator of σ, 
but S is sensitive to the presence of outliers and may not be an efficient estimator of σ in 
skewed and leptokurtic distributions. Although S has good efficiency in platykurtic and 
moderately leptokurtic distributions, its classical inferential methods may perform poorly in 
non-normal distributions. The classical confidence interval for σ relies on the assumption of 
normality of the distribution. In this paper, a performance comparison of six confidence 
interval estimates of σ is performed under ten distributions that vary in skewness and 
kurtosis. 
Methods and Material: A Monte Carlo simulation study is conducted under the following 
distributions: normal, two contaminated normal, t, Gamma, Uniform, Beta, Laplace, 
exponential and χ2 with specific parameters. Confidence interval estimates obtained using 
the more powerful ranked set sampling (RSS) are compared with the traditional simple 
random sampling (SRS) technique. Performance of the confidence intervals is assessed 
based on width and coverage probabilities. A real data example representing birth weight of 
189 newborns is used for assessment. 
Results: It is not surprising that for normal data most of the intervals were close tot he 
nominal value especially using RSS. Simulation results indicated generally better 
performance of RSS in terms of coverage probability and smaller interval width as sample 
size increases, especially for contaminated and heavy-tailed skewed distributions. 
Conclusion: Simulation results revealed that the use of RSS improved greatly the coverage 
probability. Also, it was found that the interval labeled (III) due to Bonett (2006) had the 
best performance in terms of coverage probability over the wide range of distributions 
investigated in this paper and would be recommended for use by practitioners. There may 
be a need to develop nonparametric intervals that is robust against outliers and heavy-tailed 
distributions. 
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Introduction 
Confidence interval estimation plays an 

important part in statistical inference about a 
population parameter and evaluating the 
accuracy of its estimator. A confidence interval 
for a parameter represents a set of plausible 
values for that parameter along with a 
confidence level. For example, if σ is the 
standard deviation of a population, then we seek 

two endpoints L, U such that P(L≤σ≤U) =1-α for 
a given level α. The sample standard deviation S 
is the common point estimator of σ, but S is very 
sensitive to the presence of outliers in the data 
and may not be an efficient estimator of σ in 
skewed and leptokurtic distributions. Although S 
has good efficiency in platykurtic and 
moderately leptokurtic distributions, its classical 
inferential methods may perform poorly in non 
normal distributions, see Abou-Shawiesh et al. 
(1) for a discussion.  The classical confidence 
interval for σ relies on the assumption of 
normality of the distribution. This interval is 
highly sensitive to the presence of outliers and/or 
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departure from normality as demonstrated by 
Lehman and Romano (2). As a result, many 
researchers attempted to develop an alternative 
to the classical interval estimate of σ. The key 
question is which of those available intervals 
work best and under which setting? Hence there 
is a need for a comprehensive comparison 
between such interval estimates of σ. 

Abou-Shawiesh et al. (1) performed a 
simulation study comparing seven confidence 
intervals for σ using data from normal, χ2, and 
Log-Normal distributions. Kittani and Zghoul 
(10) introduced two confidence intervals for σ 
based on the asymptotic distribution of the 
average absolute deviation from the median 
(AMAD) and mean absolute deviation (MAD) 
and compared their performance with the 
classical χ2 interval over a range of distributions. 
Hummel et al. (9) compared the performance of 
four interval estimates of σ for a range of sample 
sizes and data generated from a number of 
distributions. Bonnett (5) proposed an 
approximate confidence interval for σ and 
showed that it was near exact under normality 
with excellent small sample properties under non 
normality and compared its performance with 
the classical χ2 interval. Cojbasic and Tomovic 
(7) compared the performance of four methods 
for estimating confidence interval for the 
variance of only the exponential distribution 
aiming to remove most of its skewness. Citing 
the importance of estimating the kurtosis and its 
impact on the performance of the interval 
estimate, Burch (6) considered a number of 
kurtosis estimators combined with large sample 
theory to construct approximate confidence 
intervals for σ and compared performance of 
four interval estimates for σ over a range of 
distributions. 

While these studies introduced new methods 
for estimating σ, there is a need for a more 
comprehensive simulation study comparing 
many intervals under a wide range of 
distributions. For that reason, six interval 
estimates of σ were chosen from these studies 
and will be compared using data generated from 
ten distributions in the current study, making it a 
more comprehensive one. Moreover, the more 
powerful ranked set sampling (RSS) technique 
will be implemented and compared with the 
classical simple random sampling (SRS) 
technique which makes this study unique in this 
regard. The more powerful RSS can be used to 

obtain estimates of μ and σ in situations where 
the variable of interest is too expensive or can't 
be easily measured, but can be easily ranked. 
McIntyre (12) was the first to suggest using RSS 
to estimate population mean instead of SRS and 
the idea was later developed by Takahasi and 
Wakimoto (18) using mathematical theory to 
support their claim. Stokes (17) proposed an 
estimator for the variance of a ranked set sample 
data and showed that the estimator is 
asymptotically unbiased and asymptotically 
more efficient than the sample variance of a 
simple random sample of the same number of 
observations regardless of presence of errors in 
ranking. MacEachern et al. (11) proposed an 
alternative estimator for the variance which is 
unbiased and more efficient than Stokes's 
estimator even when the underlying distribution 
is not normal and the ranking of the elements is 
not perfect. MacEachern et al. (11) estimator of 
σ2 performs well for small to moderate sample 
sizes and is asymptotically equivalent to Stokes 
(17) estimator.  

In this paper, performance comparison of six 
confidence intervals for estimating the 
population σ using RSS compared with the usual 
SRS technique using data from ten distributions 
with varying skewness and kurtosis. The 
estimator of the variance of a ranked set sample 
proposed by MacEachern et al. (11) will be used 
in the simulations. The comparison will be based 
on coverage probability and intervals width 
which seems to be the major factors for 
comparison, see Albatineh et al. (3) and Terpstra 
and Wang (19) for a discussion.  

Methods  
Unbiased estimate of μ and σ using ranked 

set sample 
Suppose that we are interested in obtaining an 

RSS of size n from a population. First, a SRS of 
size k observations are selected and rank ordered 
on an attribute of interest. The observation that is 
determined to be the smallest is the first element 
of the RSS and is denoted X[1]1 and the 
remaining k-1 units are discarded. A second SRS 
of size k is selected from the population and 
ranked the same way and the second smallest 
observation is selected and denoted X[2]1. In a 
similar fashion, X[3]1, X[4]1,...,X[k]1 are selected, 
hence X[1]1, X[2]1,...,X[k]1 represent our first 
balanced RSS of set size k. To obtain a balanced 
RSS of size n=km, the process is repeated m 
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independent cycles yielding the balanced RSS of 
size n shown in Table 1.  

The complete balanced RSS with set size k 
and m cycles is given by {X[r]i: r=1, 2,...,k; 
i=1,2,...,m}. The term X[r]i is called the r-th 
judgment order statistic from the i-th cycle. It is 
the observation that is judged to be the r-th order 
statistic from one of the k sets in the i-th cycle, 
see MacEachern et al. (11) for discussion. 
Assume that the underlying distribution has 
finite mean μ and variance σ2, Stokes (17) 
proposed an estimator of σ2 based on RSS given 
by 

2 2
[ ] [ ]

1 1 1 1

1 1ˆ ˆ ˆ( ) , where 
1

m k m k

r i r i
i r i r

X X
km km

σ μ μ
= = = =

= − =
−  

                                
(1) 

Stokes (17) showed that this estimator is a 
biased estimator of σ2, but it is asymptotically 
unbiased as either k or m approach ∞. Moreover, 
Stokes (17) indicated that the RSS estimator μ̂  
has more precision over the sample mean; say y
obtained using SRS because of independence of 
the order statistics composing the ranked set 
sample. In fact, the author showed that var ( y ) ≥
var ( μ̂ ). The balanced RSS is used in this paper.
The estimator of the variance of a RSS proposed 
by MacEachern et al. (11) will be implemented 
in the simulations since it has been shown to 
perform very well for small as well as large 
ranked set samples, which is an improvement on 
Stokes estimator (17). This estimator is given by 

( )2 1ˆ ( 1) ( 1)k MST mk k MSE
km

σ = − + − +
                               

(2) 
where MST (Mean Square Treatment) and 

MSE (Mean Square Error) are obtained from an 
analysis of variance performed on the ranked set 
sample data with the judgment class used as the 
factor and are given by 

2 2
[ ] [ ] [ ].

1 1 1 1

1 1ˆ( ) ( )
1 1

m k m k

r i r i r
i r i r

MST X X X
k k

μ
= = = =

= − − −
− − 

(3) 
2

[ ] [ ]. [ ]. [ ]
1 1 1

1 1( ) ,  where 
( 1)

k m m

r i r r r i
r i i

MSE X X X X
k m m= = =

= − =
−  

(4) 

Confidence intervals for σ 
In this section, six widely used confidence 

intervals for estimating σ are presented. 

Exact confidence interval (I) 

Let 1 2 3, , , , nx x x x be an independent and
identically distributed random sample from a 
normal distribution with finite mean μ and 
variance σ2, i.e.  X~N (μ, σ2), then 

2
2 2

2 2
1

( 1) 1 ( ) ( 1)
n

i
i

n S x x nχ
σ σ =

− = − − 

(5) 
Therefore, 

2
2 2 2 2 2

2( ) (1 ) ( ) (1 )
2 2 2 2

( 1)( ) ( )n SP Pα α α αχ χ χ χ χ
σ− −

−≤ ≤ = ≤ ≤

        
(6) 

where 
2 2

1

1 ( )
1

n

i
i

S x x
n =

= −
− 

is the sample 
variance, Hence, a (1-α)100% exact confidence 
interval for the population variance is given by 

2 2
2

2 2

(1 , 1) ( , 1)
2 2

( 1) ( 1) 1
n n

n S n SP
α α

σ α
χ χ

− − −

 
− − < < = − 

 
 

(7) 

where 

2

( )
2
αχ

and 

2

(1 )
2
αχ

−  are the ( )2
α

th and 
(1 )2

α
− th  percentile of the 

2χ  distribution with n
- 1 degrees of freedom. Taking the square root of 
equation (7) gives the (1-α)100% confidence 
interval for σ, marked (I) in the tabulated 
simulations, which is given by 

 

2 2
2

2 2

(1 , 1) ( , 1)
2 2

( 1) ( 1)

n n

n S n S

α α

σ
χ χ

− − −

 
 − −< < 
 
 

(8) 

Table 1. Balanced RSS with m cycles and set size 
k 
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Robust confidence interval (II) 

Let 1 2 3, , , , nx x x x  be an independent and
identically distributed random sample from a 

distribution function F. For such sample the nQ
is defined as 

2.2219{| |; ; 1,2, , ; 1,2, , }n i j gQ x x i j i n j n= − < = =                                
(9) 

where 
/ 4,  and 1

2 2 2
h n hg h    = = +          and the 

symbols (.) represents combination, and [.] is the 

integer value. The nQ   estimator is the gth order

statistic of the 2
n 
 
   integer point distances. The 

value 2.2219 was chosen to make nQ  a
consistent estimator of scale for normal data. 

Rousseeuw and Croux (14) derived the factor nd

which makes the quantity n nd Q  unbiased
estimator of σ for the case of normal distribution. 

The authors provided approximate values of nd
for larger values of n which is given by 

,  if  is odd
1.4

,  if  is even
3.8

n

n n
nd

n n
n

 
  +=  
 
 +                  

(10) 

Let 1 2 3, , , , nx x x x be an independent and
identically distributed random sample of size n 
from a continuous distribution. Define the 
random variable T as  

n nd QT
σ

=
          

(11) 

where  n nd Q  is the unbiased estimator of σ so
that E(T)=1 for normal distribution. Rousseeuw 
and Croux (14) showed that for large n, the 
following asymptotic result holds: 

21 11, ,
1.65 1.65

n n
n n

d QT N d Q N
n n

σ σ
σ

   =    
   

 
                                

(12) 
Following the development in Abu-Shawiesh 

et al. (1), a (1-α)100% robust confidence interval 
for σ, marked (II) in the tabulated simulations, is 
given by 

1
2 2

1.28   1.28   ,
1.28 1.28

n n n nn d Q n d Q
Z n Z nα α−

 
 ∗ ∗
 + + 
 

(13) 

where 1
2 2

and Z Zα α−  are the 
(1 ) and ( )

2 2
α α−

th 
percentiles of the standard normal distribution. 

Bonett confidence interval (III) 

Let 1 2 3, , , , nx x x x be an independent and
identically distributed random sample from a 

normal distribution, i.e.
2( , )ix N μ σ . Mood et

al. (13) indicated that the variance of S2 can be 
expressed as 

4 4
4 4 4{ ( 3) / ( 1)} / ,  where /n n nσ γ γ μ σ− − − =  

where μ4 is the population fourth central 
moment. A variance-stabilizing transformation 
for S2 is ln (S2) and using the δ-method gives

2
4var(ln( ) { ( 3) / ( 1)} /S n n nγ≅ − − − . Shoemaker

(16) found out that using the quantity 
4{ ( 3) / } / ( 1)n n nγ − − −  improved the small

sample performance of his equal-variance test, 
and this small-sample adjustment will be used in 
our simulations. To estimate var(ln S2), one 

needs to estimate 4γ  since it is unknown in
practice. 

The Pearson's estimator 
4 2 2

4
1 1

ˆ ( ( ) / ( ( ) )
n n

i i
i i

n x x x xγ
= =

= − − 
tends to have large 

negative bias in leptokurtic (heavy tailed) 
distributions unless we have a large sample size. 
For that reason, Bonett (5) proposed an estimator 

for 4γ  which is asymptotically equivalent to
Pearson's estimator and is given by 

4

1
4

2 2

1

( )
ˆ

( ( ) )

n

i
i

n

i
i

n x m

x x
γ =

=

−
=

−




(14) 

where m is the trimmed mean with trim-
proportion equals1/ (2 4)n − . Bonett (5) indicated 
that this estimator of kurtosis tends to have less 
negative bias and smaller coefficient of 
variability compared to Pearson's estimator in 
symmetric and skewed leptokurtic distributions, 
and will be implemented in our simulations. 
Bonett (5) proposed the confidence interval 
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limits for σ2 given by 
2 2

/2 /2LCL= exp{ln   -  Z } and UCL= exp{ln   + Z }cS SE cS SEα α

(15)  
where Zα/2 is the two-sided critical value from 

the standard normal distribution, the standard 
error 

4 /2ˆ ( 3) / } / ( 1),  where / ( )SE n n n c n n Zαγ= − − − = −

and 4γ̂  as given in equation (14). Taking the
square root of the endpoints of equation (15) 
gives the endpoints of (1-α)100% confidence 
interval for σ which will be marked (III) in the 
tabulated simulations. 

Large sample normal approximation (IV) 
It is well known that the distribution of the 

sample variance S2 is asymptotically normally 
distributed with expected value 

2σ and variance
4( 1) / nγ σ− , provided that the fourth moment

of the parent distribution is finite and γ  is the
population kurtosis, see Hummel et. al. (9) and 
Arnold (4) for a discussion. Such an asymptotic 
distribution gives rise to the (1-α)100% 
confidence interval for the variance given by 

2 2
2

1 /2 1 /2
ˆ ˆ1 11 1

S S

Z Z
n nα α

σ
γ γ

− −

 
 
 ≤ ≤
 − −+ − 
                                                

16) 

where γ̂  is a consistent estimator of the
kurtosis which is unbiased for normal samples 

and ˆeγ  is the corresponding estimate of the

excess kurtosis (γ =3 and eγ =0 for normal
distribution) given by 

4 2

4
1

( )( 1) 3( 1)ˆ ˆ 3
( 1)( 2)( 3) ( 2)( 3)

n
i

e
i

x xn n n
n n n S n n

γ γ
=

−+ −= − = −
− − − − −

Taking the square root of equation (16) gives 
the (1-α)100% confidence interval for σ which 
will be marked "IV" in the tabulated simulations. 

Adjusting for skewness (V) 
 Note that for small samples, the distribution 

of S2 has high skewness. To help adjust for this 
skewness, the natural logarithm transformation is 
applied to the sample variance. Using the 
Cramer δ method, ln(S2) will be asymptotically 
approximately normally distributed with mean 
ln(σ2) and corresponding variance (γ - 1)/n.
Using this transformation, a (1-α)100% 
confidence interval for σ2 is given by 

2 2 2
1 /2 1 /2

ˆ ˆ1 1exp expS Z S Z
n nα α

γ γσ− −

   − −− ≤ ≤      
   

(17) 
Taking the square root of equation (17) gives 

the (1-α)100% confidence interval for σ which 
will be marked (V) in the tabulated simulations. 

Adjusted degrees of freedom (VI) 
It is known that the sample variance is a sum 

of squares, and for sufficiently large samples, it 

can be approximated by a 
2χ distribution with

an appropriate degrees of freedom which can be 
estimated using the matching of moments 
method. A similar argument is used by 
Shoemaker (16) when approximating the 
distribution of a ratio of independent sample 
variances. The first two moments of the 
distribution of S2 are matched with those of a 

random variable 
2
rY cχ , and then solving for r

and c the equations
4

2 23,  and ( ) 2
1

ncr rc
n n

σσ γ −= − =
− . Mood et. al. (13) 

indicated that when sampling from any 
distribution with finite first four moments, we 
have 

4
2 3var( ) ( )

1
nS

n n
σ γ −= −

−
(18) 

The unique solution is given by 

2 2

2 ( 1) 2 ( 1)
( 1) 3 ( 1) 2

3 2
2 1 2 1

e

e

n n n nr
n n n n

n nc
n n n n

γ γ
σ σγ γ

− −= =
− − + − +

−   = − = +   − −   
(19) 

Therefore, 

2

2
rS
σ  is approximately distributed 

as
2
rχ , and hence an approximate confidence 

interval estimate for the variance is given by 
2 2

2
2 2
ˆ ˆ,1 /2 , /2

ˆ ˆ 2ˆ,  where 
ˆ 2 / ( 1)r r e

rS rS nr
n nα α

σ
χ χ γ−

≤ ≤ =
+ −

(20) 
Taking the square root of equation (20) gives 

the (1-α)100% confidence interval for σ which 
will be marked (VI) in the tabulated simulations 

Results 
Confidence interval estimation is one form of 

estimation in which an interval of plausible 
values of the population parameter of interest is 



http://jbe.tums.ac.ir

Improved confidence interval estimation 

J Biostat Epidemiol. 2018; 4(3): 173-183 

178 

given, attached to a confidence level. The most 
common criteria for comparing confidence 
intervals are coverage probabilities and width. In 
simulation studies, it is desired that the coverage 
probability be very close to the nominal 
confidence level. When the coverage probability 
is greater than the nominal confidence level, the 
confidence interval is a conservative one and is 
considered to be valid, but it leads to confidence 
intervals that are wider than they are supposed to 
be. A confidence interval is anti-conservative if 
it is associated with a coverage probability that is 
smaller than the nominal confidence level. Such 
a confidence interval is not valid, and it 
generally produces confidence intervals shorter 
than they need to be. 

Simulation Study 
It is hard to perform a theoretical comparison 

between many confidence intervals; hence a 
simulation study will be conducted for such 
purpose. A range of random sample sizes: n=20, 
30, 50, 100 will be generated from the following 
distributions: 
1. N(0, 1): Normal distribution with mean zero

and standard deviation one.
2. t(10): t distribution with 10 degrees of

freedom.
3. Beta(3,3): Beta distribution with parameters

shape=3 and scale =3.
4. Laplace(0,1): Laplace distribution (double

exponential) with location parameter μ=0 and
scale parameter b=1.

5. CN(0,0.95): Contaminated normal
distribution

1 2( ,1 ) (1 ) ( , ) ( , )CN N Nμ ξ ξ μ σ ξ μ σ− = − +
   with μ=0, σ1=1, σ2=2 and contamination 
proportion ξ=5%. 

6. CN(0,0.90):Contaminated normal distribution
1 2( ,1 ) (1 ) ( , ) ( , )CN N Nμ ξ ξ μ σ ξ μ σ− = − +

  with μ=0, σ1=1, σ2=2 and contamination 
proportion ξ=10%. 

7. Exp(1): Exponential distribution with rate
parameter λ=1.

8.
2 (3)χ : 

2χ distribution with 3 degrees of
freedom.

9. U(1,5): Uniform distribution with
minimum=1 and maximum=5.

10. Gamma(2,2): Gamma distribution with shape
parameter k=2 and scale parameter θ=2.

Using 2000 replications, the simulation error 

for a two-sided 95% confidence interval is
(1 0.95)*0.95 0.00487 0.49%

2000
− = ≈

. Thus, any 
coverage probability between 0.9404 and 0.9596 
will be within a set of acceptable values. Of 
course a coverage probability higher than 0.9596 
will still imply a valid interval but it simply 
means that such interval is wider than it is 
supposed to be. An interval with coverage 
smaller than 0.9404 imply that such interval is 
not valid and is shorter than what it is supposed 
to be. Given two confidence intervals for σ with 
roughly the same coverage probability, only then 
we will resort to the interval width to choose 
which interval is better. 

 Ten distributions were considered in the 
simulations which represents: symmetric 
distributions {Normal (0,1)}, heavy-tailed 
symmetric distributions {t(10), Laplace (0,1), 
CN(0,1,0.95), CN(0,2,0.90)}, light-tailed 
symmetric distributions {Beta (3,3), Uniform 
(1,5)}, light-tailed skewed distributions 
{Exponential (1)}, and heavy tailed skewed 

distributions {
2 (3)χ , Gamma (2,2)}. Below is a

summary for the findings for each group of 
distributions. 

Symmetric Distributions 
Since interval (I) is derived under the 

assumption of normality, it is not surprising to 
see its coverage probability close to the nominal 
value using both RSS and SRS for both small 
and large sample sizes. Interval (II) achieved 
nominal value coverage for sample size ≥50, 
using both RSS and SRS, while intervals (III), 
(IV), (V), (VI) achieved coverage probability 
closer to nominal value using RSS for sample 
sizes ≤50 and using both RSS and SRS for n>50 
except interval (III) using SRS. 

Heavy-Tailed Symmetric Distributions 
For the t-distribution, coverage obtained 

using RSS were closer to the 95% nominal target 
for intervals (I), (III), (IV), and (VI) for n=20, 
but for n≥50, all intervals except (I) attained 
nominal coverage probability. For Laplace 
distribution, coverage using RSS were still 
higher than SRS, but were closer to nominal 
value when n≥50 using intervals (III), (IV), and 
(VI). For contaminated normal distributions, 
coverage using RSS is still higher than SRS, but 
got worse for 10% contamination especially for 
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larger n. For 5% contamination, intervals (I), 
(III), (V), and (VI) did well but only interval 
(III) remained closer to nominal value as n 
increased. For 10% contamination, interval (III) 
has the best coverage but still lower than 
nominal value. 

Light-Tailed Symmetric Distributions 
For Beta distribution, intervals (I) and (III) 

always produced wider intervals than supposed 

to be using both RSS and SRS for all sample 
sizes considered. Interval (II) produced coverage 
very close to nominal value using both RSS and 
SRS for all sample sizes. Intervals (IV), (V), and 
(VI), although had valid coverage but their 
performances were mixed, i.e. closeness to 
nominal value depending on the sample size. For 
the Uniform distribution, intervals (I), (II), and 
(III) produced coverage probability higher than 
the nominal value, though valid but wider than 

Table 2. Estimated coverage probabilities and intervals widths of six confidence intervals for σ 
with data from Normal(0,1), t(10), Beta (3,3), Laplace (0,1) for sample sizes 20,30,50, and 100 
using RSS and SRS techniques. The row with (*) represents coverage probability and the row 
with (**) represents interval width. 
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they should be. Intervals (IV), (V), and (VI) had 
coverage closer to nominal value with RSS 
performing better than SRS, especially for n<50. 

Light-Tailed Skewed Distributions 
For the exponential distribution, coverage 

was smaller than the nominal value for all 
intervals, with best performance by intervals 
(III) and (IV) especially for n≥50. The RSS 
produced coverage probability higher than SRS, 
although lower than the nominal value. 

Heavy Tailed Skewed Distributions 
For the

2χ distribution, the coverage 
probability of intervals (III), (IV), (V), and (VI) 
increased with an increase in sample size, while 
coverage of (I) and (II) decreased with an 
increase in sample size. RSS produced coverage 
probability higher than that of SRS. Interval (III) 
had the best performance especially for n=100. 
The pattern in the Gamma distribution is almost 
identical to that of the

2χ distribution with 
interval (III) as best performer followed by 

Table 3. Estimated coverage probabilities and width of six confidence intervals for σ with data from 
contaminated normal, exponential (λ = 1), and χ2(3) distributions for sample sizes 20,30,50,
and 100 using RSS and SRS techniques. The row with (*) represents coverage probability and the row with 
(**) represents interval width. 
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intervals (IV) and (VI), respectively. 

Real Data Example 
The birth weight data used in this example is 

obtained from Hosmer and Lemeshow (8), 
which was collected from the Baystate Medical 
Center in Springfield, Massachusetts (University 

of Massachusetts Amherst). In this data, a baby 
weighing less than 2500 grams is defined as 
"low birth weight" child.  Data were collected 
from 189 women of which 59 women had low 
birth weight babies and 130 women had normal 
birth weight babies. For this data, the average 
birth weight was 2944.66 grams, with a standard 

Table 5. Tests of normality results for the birth weight data
Test of normality Test statistic P value
Shapiro - Wilk W = 0.9925 0.4384
Anderson - Darling A = 0.4157 0.3301
Cramer - von Mises W = 0.0584 0.395
Kolmogorov - Smirnov D = 0.0435 0.5169

Table 6. Estimated six confidence intervals for σ along with their widths using birth 
weight data with sample sizes 25, 50, and 100 selected using RSS and SRS techniques. 

Interval I II III IV V VI
RSS 
Width 

n=25
(480.7,856.5) (547.6,1031.1) (490.8,838.0) (513.4,821.4) (494.5,766.5) (502.5,795.0)

375.7 483.5 347.2 308.0 271.9 292.4
SRS 
Width 

(531.6,947.2) (592.7,1116.0) (709.2,709.2) (567.1,910.9) (546.0,848.9) (555.1,880.8)
415.5 523.3 0.001 343.7 302.9 325.7

RSS 
Width 

n=50
(525.4,783.8) (577.1,896.1) (508.7,809.4) (531.0,814.0) (514.2,769.3) (523.1,789.0)

258.4 319.0 300.6 282.9 255.1 265.9
SRS 
Width 

(617.5,921.3) (624.6,969.9) (754.2,754.2) (619.4,974.6) (597.9,914.1) (609.4,940.0)
303.7 345.3 0.0002 355.1 316.2 330.5

RSS 
Width 

n=100
(592.8,784.3) (616.2,839.1) (587.5,791.3) (613.4,760.3) (607.4,750.4) (610.2,755.7)

191.5 222.8 203.7 146.8 142.9 145.4
SRS 
Width 

(634.7,839.8) (620.0,844.2) (730.1,730.1) (628.6,878.3) (615.3,849.4) (622.5,862.3)
205.0 224.2 0.0001 249.6 234.1 239.8

Table 4. Estimated coverage probabilities and width of six confidence intervals for σ with data 
from Uniform (1,5) and Gamma (2,2) distributions for sample sizes 20,30,50, and 100 using RSS 
and SRS techniques. The row with ( * )  represents coverage probability and the row with (**) 
represents interval width. 
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deviation of 729.02 grams. Four tests of 
normality, as shown in Table 5, indicated that 
the birth weight data follow a normal 
distribution.  

Table 6 presents six confidence intervals of σ 
for the birth weight data with samples of size 25, 
50, and 100 using RSS and SRS. All intervals 
captured, S=729.02, the point estimate of σ, 
except for the third interval using SRS. Also, 
there is a clear pattern of smaller width of the 
interval as the sample size increase from 25 to 
100. Also, the intervals produced by RSS have 
smaller width compared to that of SRS. 

Discussion 
Parameters' estimation using confidence 

intervals is more desirable than merely testing if 
the parameter equals a specified value. Interval 
estimation gives the practitioners an idea about 
the set of plausible values of the parameter with 
some confidence. Several papers discussed 
estimating σ using confidence interval approach, 
but few of these studies were comprehensive in 
the sense of conducting a comprehensive 
simulation study that involves several 
distributions, see Abu-Shawiesh et al. (1), Bonett 
(5), and Hummel et al. (9) to name a few. 
Moreover, none of those studies implemented 
the more powerful RSS in estimating σ. Several 
types of distributions including symmetric, 
heavy-tailed symmetric, light-tailed symmetric, 
light-tailed and heavy tailed skewed were 
included. Simulations results revealed that the 
type of distribution had some role in reaching 
nominal coverage along with the sample size 
considered. In general, for non normal 
distributions the coverage probability improved 
with larger sample size but with RSS intervals 
achieved better coverage probability and that is 
closer to the nominal value. When the data was 
contaminated at 10%, the coverage probability 
was affected with interval III having the best 
coverage but still lower than nominal value. This 
may indicate the need to look for some 
nonparametric interval estimators for σ 
especially for small n and presence of 
contamination or presence of light or heavy 
skewness. 

Conclusion 
In this paper, a simulation study was 

conducted to compare six well known 
confidence interval estimates for the population 

standard deviation. Data were generated from 
ten distributions with varying skewness and 
kurtosis and sample sizes 20, 30, 50, and 100 to 
capture a wider picture of the performance.  A 
comparison of ranked set sampling against 
simple random sampling in estimating six 
confidence intervals for the population standard 
deviation is performed. Two main criteria for 
comparison were implemented, namely: 
coverage probability and confidence interval 
width. Simulation results revealed that the use of 
RSS improved greatly the coverage probability. 
Also, it was found that the interval labeled (III) 
due to Bonett (5) had the best performance in 
terms of coverage probability over the wide 
range of distributions investigated in this paper 
and would be recommended for use by 
practitioners. 
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