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Background & Aim: The diagnostic accuracy of a test is the ability to discriminate accuratelybetween patients who have 

and do not have the target disease. A common problem in assessing thediagnostic accuracy of doctors is the unknown true 

disease status which in the literature is referredas “absence of a gold standard”. 

Methods & Material: In this article, a Naïve Bayesian network with hidden class node and a clusteringbased algorithm for 

categorical data named K-modes are proposed for estimating the diagnosticaccuracy of 5 physicians in diagnosing Diabetic 

Retinopathy. Also to assess and compare the efficiencies of these models, a simulation study with two different scenarios is 

conducted. 

Results: Simulation study indicates that for Naïve Bayesian network and the non-rare disease, say forprevalence 0.1 and 0.2, 

as the sample size increases so the coverage probability. But for high prevalencevalues, say 0.5, coverage probabilities are not 

as good as those of non-rare disease. K-modes algorithm's efficiency decreases by the increase in the number of records, but 

it achieves betterresults when there are a small number of records, prevalence is approximately 0.3 and sensitivitiesare high. 

Results of the real data set reveal that sensitivities for all physicians except one, were higher than 85% and all specificities 

were higher than 90%. Also the estimated prevalence happensto be 0.32. 

Conclusion: Through simulations and data analysis we show that this new approach based on Naïve Bayesian networks 

provides a useful alternative to traditional latent class modeling approaches usedin this setting. 

 

. 

Introduction 

Diagnosis of a disease can sometimes be made 

on the basis of clinical signs and symptoms, but 

accurate diagnosis often requires the use of 

diagnostic tests. The evaluation of the accuracy 

of diagnostic testsis highly crucial and must be 

done on a relatively large sample of clinically 

suspected patients. Thediagnostic accuracy of a 

test is the ability to discriminate accurately 

between patients who have and do not have the 

target disease. Sensitivity and specificity are the 

most commonly used diagnostic testmeasures. 

Sensitivity is the proportion of diseased subjects 
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that show a positive test result. Specificityis the 

proportion of non-diseased subjects that show a 

negative test result. However, estimating 

thesediagnostic accuracy measures require 

information from the true disease status of the 

individuals which is determined by “gold 

standard” (1, 2). “Gold standard” test, is a test 

which is error free and perfectly classifies the 

patients into groups of diseased and non-diseased 

(3). 

When there is no gold standard, latent class 

models where the unknown gold standard test is 

treated as a latent variable are often used. Hence, 

latent class models are used for cluster analysis of 
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categoricaldata. In fact, cluster analysis is the 

partitioning of similar objects into meaningful 

classes, when both the number of classes and the 

composition of the classes are to be determined 

(4, 5). 

Cluster analysis is sometimes called latent 

class analysis (LCA) when the variables are 

categorical(6, 7). The k-modes clustering 

algorithm (8, 9) is one of the first algorithms for 

clustering large categorical data. In the past 

decade, this algorithm has been well studied and 

widely used in various applications. 

When the gold standard is binary (disease and 

nondisease), methods have been proposed to 

estimate the accuracy of multiple binary tests 

without a gold standard (10). But to the best of 

our knowledge, no study has been done on 

applying Bayesian networks for diagnostic 

accuracy measurements. K-Modesclustering 

algorithm, have also received no attention in the 

context of diagnostic accuracy, and we show that 

it performs very weak comparing to Bayesian 

networks. 

This paper is concerned with a special type of 

LC models called Naïve Bayesian networks with 

thebinary class node being hidden. Class node is 

the parent node of all other nodes and no other 

connectionsare allowed in a Naïve Bayesian 

network. This leads to the local independence 

assumption, i.e., given the class variable, 

observed variables are independent of each other. 

In this paper, we propose a method to estimate the 

diagnostic accuracy of doctors without a gold 

standard using Naïve Bayesian networksfor 

which the true disease status is considered to be a 

binary latent variable. The proposed method is 

illustrated on a real data set from a study of 

Diabetic Retinopathy diagnosis data as well as a 

simulationstudy. 

Method 

We limit the discussion to the situation that a 

binary diagnostic test is used to diagnose a binary 

diseasestatus. Let yij be the observed binary 

outcome (0= negative,1= positive) for the jth 

imperfect test(or diagnoses from jth doctor) Tj on 

the ith subject with the unobservable true disease 

status Di(0=not diseased, 1= diseased), where i = 

1, 2,…,N, j = 1, 2,…, J, and yij is a realization of 

the binary random variable Yij. The outcome 

pattern over all tests for an individual subject i is 

then a vector yi of length J with yi= (yi1, yi2, 

…,yiJ)T. Results for an individual test are 

Bernoulli distributed with P(Yij= 1|Di= d), the 

probability of testing positive on the jth test given 

an individual's true diseasestatus d. The 

conditional independence assumption can be 

expressed as: 

 

𝑃(𝑌𝑖1 = 𝑦1. 𝑌𝑖2 = 𝑦2. … . 𝑌𝑖𝐽 = 𝑦𝐽|𝐷𝑖 = 𝑑) = ∏ 𝑃(𝑌𝑖𝑗 = 𝑦𝑗|𝐷𝑖 = 𝑑)

𝐽

𝑗=1

  (1) 

This can be expressed in terms of the test sensitivities and specificities as: 

𝑃(𝑌𝑖1 = 𝑦1. 𝑌𝑖2 = 𝑦2. … . 𝑌𝑖𝐽 = 𝑦𝐽|𝐷𝑖 = 1) = ∏ 𝑆
𝑗

𝑦𝑗

𝐽

𝑗=1

(1 − 𝑆𝑗)(1−𝑦𝑗) (2) 

𝑃(𝑌𝑖1 = 𝑦1. 𝑌𝑖2 = 𝑦2. … . 𝑌𝑖𝐽 = 𝑦𝐽|𝐷𝑖 = 0) = ∏ 𝐶
𝑗

(1−𝑦𝑗)

𝐽

𝑗=1

(1 − 𝐶𝑗)𝑦𝑗 (3) 

 

with Sj = P(Yij = 1|Di = 1) = P(Yj = 1|Di = 1) being the sensitivity of test Tj and Cj =

P(Yij = 0|Di = 0) = P(Yj = 0|Di = 0)being the specificity of test Tj. 
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The marginal distribution of Yi can be written as follows: 

𝑃(𝒀𝑖) = ∑ 𝑃(𝑌1 = 𝑦1. 𝑌2 = 𝑦2. … . 𝑌𝐽 = 𝑦𝐽|𝐷𝑖 = 𝑑)

1

𝑑=0

𝑃(𝐷𝑖 = 𝑑)

= ∑ 𝑃(𝐷𝑖 = 𝑑)

1

𝑑=0

∏ 𝑃(𝑌𝑗 = 𝑦𝑗|𝐷𝑖 = 𝑑)

𝐽

𝑗=1

= 𝜋 ∏ 𝑆
𝑗

𝑦𝑗

𝐽

𝑗=1

(1 − 𝑆𝑗)(1−𝑦𝑗) + (1 − 𝜋) ∏ 𝐶
𝑗

(1−𝑦𝑗)

𝐽

𝑗=1

(1 − 𝐶𝑗)𝑦𝑗 

(4) 

where 𝜋 = 𝑃(𝐷𝑖 = 1) is the prevalence of the 

disease. As you can see the test sensitivities and 

specificities remain constant (fixed effects 

model) from subject to subject. When the test 

sensitivities and specificities vary among the 

subjects it is called random effects model. The 

reason to perform the diagnostic study is to 

estimate the disease prevalence and the 

sensitivity and specificity of the tests. 

Naïve Bayesian networks 

When the true disease status is binary, 

sensitivity, specificity, positive and negative 

predictive values are the parameters which 

describe the accuracy of different diagnostic tests 

or doctors. One of the simplest, and yet most 

consistently well-performing set of models that 

can be used for estimating these parameters is 

Naïve Bayesian network. 

A Naïve Bayes, as discussed in (11), is a 

simple structure that has the classification node as 

the parentnode of all other nodes, see Figure (1). 

No other connections are allowed in a Naïve 

Bayes structure. 

In this network the joint probability 

distribution of the variables is 

 

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒. 𝐷𝑟1. 𝐷𝑟2. 𝐷𝑟3. 𝐷𝑟4. 𝐷𝑟5) = 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒) ∏ 𝑃(𝐷𝑟𝑗|𝐷𝑖𝑠𝑒𝑎𝑠𝑒)

5

𝑗=1

 

 

In Figure (1) we have a binary Disease status 

as the class node and diagnostic results of five 

doctors (Dr1through Dr5). An instance in this 

model could be that all the doctors diagnose a 

specific patient as diseased (Dr1=…= Dr5= 1) and 

the true disease status is also positive 

(Disease=1). The probability of observing such a 

case is calculated as: 

 

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1. 𝐷𝑟1 = 𝐷𝑟2 = 𝐷𝑟3 = 𝐷𝑟4 = 𝐷𝑟5 = 1)

= 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1) ∏ 𝑃(𝐷𝑟𝑗 = 1|𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1)

5

𝑗=1

= 𝜋 ∏ 𝑆𝑗

5

𝑗=1
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Figure 1. A Naïve Bayesian network 

 

When all the data entries are observed, finding 

Maximum Likelihood Estimates (MLEs) of 

theparametersreduce to a simple counting 

problem:

 

𝑆1 = 𝑃(𝐷𝑟1 = 1|𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1) =
𝑁(𝐷𝑟1 = 1. 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1)

𝑁(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1)
 

 

But in case of missing values or hidden 

variables (here Disease node) the famous 

Expectation Maximization (EM) algorithm is 

applicable. Now we describe the application of 

EM algorithm in Bayesiannetworks with hidden 

variables. 

EM for Bayesian networks 

Suppose we have a data set consisting of 

observable variables, O, and hidden variables, H, 

which areactually the values of the hidden nodes 

in each case. For instance, for a data set of 10 

records and onehidden node, we have 10 hidden 

variables (12, 13, 14). We describe the method for 

Naïve Bayesian network, so thestructure of the 

network is known.  

The goal here is to find to the maximum 

likelihood estimation of the conditional 

probability tables (CPTs) which in our paper are 

sensitivities, specificities and the prevalence of 

the disease. The procedureconsists of three main 

steps: 

1. Initialize CPTs to anything (with no 

zero's) 𝜽𝟎, 

2. Fill in the data set with distribution over 

values for hidden variables, 

3. Estimate CPTs using expected counts. 

To better understand the EM 
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algorithm in a Naïve Bayesian network, an 

illustrative example is helpful. 

An illustrative example 

Let T1and T2be two binary observed variables, 

O = (T1; T2), and a hidden cause, called D. Also 

suppose the summarized data is like Table (1).

Table 1. Summarized data set for a Naïve Bayesian network with a binary hidden class node D and two observed binary nodes 

O=(T1, T2) 

 

m 

 

T1 

 

T2 

Number  

of cases 

𝑃(𝐷𝑚|𝑂𝑚, 𝜽𝑡) 

t=0 t=1 … t=5 … t=10 

1 0 0 6 0.48 0.52 … 0.79 … 0.971 

2 0 1 1 0.39 0.39 … 0.31 … 0.183 

3 1 0 1 0.42 0.39 … 0.31 … 0.183 

4 1 1 4 0.33 0.28 … 0.05 … 0.001 

 

 

Let 𝜃1
𝑡 = 𝑃(𝐷 = 1) = 𝜋, 𝜃2

𝑡 = 𝑃(𝑇1 = 1|𝐻 = 1) = 𝑆1, 𝜃3
𝑡 = 𝑃(𝑇1 = 1|𝐻 = 0) = 1 − 𝐶1, 𝜃4

𝑡 =

𝑃(𝑇2 = 1|𝐻 = 1) = 𝑆2, 𝜃5
𝑡 = 𝑃(𝑇2 = 1|𝐻 = 0) = 1 − 𝐶2and𝜽𝑡 = (𝜃1

𝑡. … . 𝜃5
𝑡). 𝜽𝑡’s elements are 

theCPTs of our simple network. 

Let begin by 𝜽0 = ( .52.61,0.43,00.4,0.55,0 ). Then we have:  

𝑃(𝐷1|𝑂1, 𝜽0) = 𝑃(𝐷 = 1|𝑇1 = 𝑇2 = 0, 𝜽0) =
𝑃(𝑇1 = 0|𝐷 = 1)𝑃(𝑇2 = 0|𝐷 = 1)𝑃(𝐷 = 1)

∑ 𝑃(𝑇1 = 0|𝐷 = 𝑑)𝑃(𝑇2 = 0|𝐷 = 𝑑)𝑃(𝐷 = 𝑑)1
𝑑=0

=
0.40.570.45 

0.60.480.390.40.570.45 
= 0.4774  

𝑃(𝐷4|𝑂4. 𝜽0) = 𝑃(𝐷 = 1|𝑇1 = 𝑇2 = 1. 𝜽0) =
𝑃(𝑇1 = 1|𝐷 = 1)𝑃(𝑇2 = 1|𝐷 = 1)𝑃(𝐷 = 1)

∑ 𝑃(𝑇1 = 1|𝐷 = 𝑑)𝑃(𝑇2 = 1|𝐷 = 𝑑)𝑃(𝐷 = 𝑑)1
𝑑=0

=
0.40.430.55 

0.60.520.610.40.430.55 
= 0.332  

 

This leads to the expected value of D=1 as: 

𝐸(𝐷 = 1) = 33.0442.039.048.06   

Now we can re-estimate the parameters for the next iteration: 

�̂�(𝐷 = 1) =
5.01

12
= 0.4175 

�̂�(𝑇1 = 1|𝐷 = 1) =
𝐸(𝑇1 = 1. 𝐷 = 1)

𝐸(𝐷 = 1)
= 347.0

01.5

33.0441.0



 

�̂�(𝑇1 = 1|𝐷 = 0) =
𝐸(𝑇1 = 1. 𝐷 = 0)

𝐸(𝐷 = 0)
= 466.0

)01.512(

67.0458.0





 

�̂�(𝑇2 = 1|𝐷 = 1) =
𝐸(𝑇2 = 1. 𝐷 = 1)

𝐸(𝐷 = 1)
= 34.0

01.5

33.0439.0



 

�̂�(𝑇2 = 1|𝐷 = 0) =
𝐸(𝑇2 = 1. 𝐷 = 0)

𝐸(𝐷 = 0)
= 47.0

)01.512(

67.0461.0





 

and obtain 𝜽1 = ( 0.47 0.34, 0.46, 0.35, 0.42, ). 
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The above process iterates once more with 𝜽0 replaced by 𝜽1 and leads to 𝜽2 =

( 0.5 0.3, 0.5, 0.31, 0.42, ). The iteration process repeats until convergence. 

 

K-modes algorithm 

The k-modes approach modifies the standard 

k-means process for clustering categorical data 

by replacing the Euclidean distance function with 

the simple matching dissimilarity measure, 

usingmodes to represent cluster centers and 

updating modes with the most frequent 

categorical valuesin each of iterations of the 

clustering process (8, 9). 

Distance function 

To calculate the distance (or dissimilarity) 

between two objects X and Y described by m 

categoricalattributes, the distance function in k-

modes is defined as:

 

𝑑(𝑋. 𝑌) = ∑ 𝛿(𝑥𝑖. 𝑦𝑖)
𝑚

𝑖=1
 

(5) 

 

where 

𝛿(𝑥𝑖 . 𝑦𝑖) = {
0. 𝑖𝑓𝑥𝑖 = 𝑦𝑖

1. 𝑖𝑓𝑥𝑖 ≠ 𝑦𝑖
 

Here, xi and yi are the values of attribute j in X 

and Y. This function is often referred to as 

simplematching dissimilarity measure or 

Hamming distance. The larger the number of 

mismatches ofcategorical values between X and 

Y is, the more dissimilar the two objects. 

Clustering process 

In k-modes clustering, the cluster centers are 

represented by the vectors of modes of 

categoricalattributes. To cluster a categorical data 

set X into k clusters, the k-modes clustering 

processconsists of the following steps: 

Step 1: Randomly select k unique objects as 

the initial cluster centers (modes). 

Step 2: Calculate the distances between each 

object and the cluster mode; assign the object to 

thecluster whose center has the shortest distance 

to the object; repeat this step until all objectsare 

assigned to clusters. 

Step 3: Select a new mode for each cluster and 

compare it with the previous mode. If different, 

go back to Step 2; otherwise, stop. 

This clustering process minimizes the 

following k-modes objective function:

 

𝐹(𝑈. 𝑍) = ∑ ∑ ∑ 𝑢𝑗.𝑙𝑑(𝑥𝑗.𝑖. 𝑧𝑙.𝑖)

𝑚

𝑖=1

𝑛

𝑗=1

𝑘

𝑙=1

 

Where 𝑈 = [𝑢𝑗.𝑙] is an 𝑛 × 𝑘 partition matrix, 

𝑍 = {𝑍1, 𝑍2, … . , 𝑍𝑘} is a set of mode vectors and 

the distance function d is defined as in Equation 

(5). 

Performance evaluation 

Coverage probability of a technique for 

calculating a confidence interval is the proportion 

of the time that the interval contains the true value 

of interest (15). If all assumptions used in 

deriving a confidence interval are met, the 



Assessing diagnostic accuracy of doctors without a gold standard using Bayesian networks and K-modes 

clustering algorithm Vol 4 No 4 (2019) 

 

190 

 

nominal coverage probability which is often set 

at 0.95, willequal the actual coverage probability. 

For the simulation study, model's efficiency is 

evaluated using coverage probability and in the 

real case of Diabetic retinopathy study, we can 

also obtain true positive predictive value (PPV) 

and negative predictive value (NPV) for each 

diagnostic test. The formulas for calculating 

theseaccuracy measures are as below:

 

𝑃𝑃𝑉 =
𝑃(𝑌𝑖𝑗 = 1|𝐷𝑖 = 1)𝑃(𝐷𝑖 = 1)

𝑃(𝑌𝑖𝑗 = 1|𝐷𝑖 = 1)𝑃(𝐷𝑖 = 1) + 𝑃(𝑌𝑖𝑗 = 1|𝐷𝑖 = 0)𝑃(𝐷𝑖 = 0)
=

𝑆 × 𝜋

𝑆 × 𝜋 + (1 − 𝐶) × (1 − 𝜋)
 

 
 

𝑁𝑃𝑉 =
𝑃(𝑌𝑖𝑗 = 0|𝐷𝑖 = 0)𝑃(𝐷𝑖 = 0)

𝑃(𝑌𝑖𝑗 = 0|𝐷𝑖 = 0)𝑃(𝐷𝑖 = 0) + 𝑃(𝑌𝑖𝑗 = 0|𝐷𝑖 = 1)𝑃(𝐷𝑖 = 1)
=

𝐶 × (1 − 𝜋)

𝐶 × (1 − 𝜋) + (1 − 𝑆) × 𝜋
 

 

 

Simulation study 

A simulation study was conducted under the 

Naïve Bayesian network and the k-modes 

algorithm, to calculate coverage probability for 

desired parameters. 

Different parameter values for sensitivities 

and specificities of five tests were considered 

in two different scenarios. In each scenario, 

we pre-defined fixed sets of prevalences and 

sample sizes. Sample sizes considered in this 

study, are 20, 50, 100 and 1000 and prevalences 

were set to 0.1, 0.2, 0.3 and 0.5. Under each 

scenario of sensitivity and specificity, and under 

each pair of sample sizes and prevalences, we 

simulated 10000 samples, and calculated the 

coverage probabilities using boot package in R 

(16, 17). In the first scenario the sensitivities were 

set to be high but the specificities to be low, in the 

second scenario, sensitivities and specificities 

were set to below and high, respectively (Table 

(2)).
Table 2. Sensitivity and specificities considered in the simulation study 

Scenario Parameter Doctor1 Doctor2 Doctor3 Doctor4 Doctor5 

1 S 94.98% 89.93% 98.99% 91.98% 89.93% 

 C 69.85% 75.03% 67.92% 77.90% 69.85% 

2 S 71.91% 64.79% 74.83% 69.84% 76.85% 

 C 89.93% 94.97% 98.99% 92.95% 97.99% 

 

 

Table (3) demonstrates the coverage 

probabilities estimated for prevalence, 

sensitivities and specificities under the first 

scenario. Coverage probabilities estimated under 

the second scenario are illustrated in Table (4). 

In both scenarios, for each value of 

prevalence, as the sample size increases the 

coverage probabilities of Naïve Bayesian 

network get closer to 1 indicating the rise in the 

performance of Naïve Bayesian network. For 

small sample sizes (N=20 and 50), there is an 

amount of uncertainty in the coverage 

probabilities and one cannot detect a pattern. But 

for N=100 and higher, the method appears to be 

highly efficient. Also, note that for 0.1 and 0.2 

values of prevalence, the convergence is better 

and the Naïve Bayesian network performs better, 

but for large values of prevalence (0.5) the 

coverage decreases. As for prevalence, the 

method performs very acceptable in all cases. 

Coverage probabilities for sensitivities obtained 

under senario2 (Table (4)) are higher than those 

of senario1 (Table (3)), especially for Doctors 3 
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and 4. This indicates the weakness of Naïve 

Bayesian network in estimating high sensitivities 

comparing to high specificities. 

 

Table 3. Coverage probabilities under scenario 1, considering different sample sizes and prevalence values, calculated using 

Naïve Bayesian network and k-modes algorithm (values in the parentheses) 

 

N 

 

Doctors 

 Prevalence 

0.1 0.2 0.3 0.5 

20 1 S 1 (1) 1 (1) 0.9 (1) 1 (1) 

C 1 (0.27) 1 (0.02) 1 (1) 1 (1) 

2 S 1 (1) 0 (1) 1 (1) 0.15 (0.99) 

C 0.99 (0.2) 0.54 (1) 0.98 (1) 1 (1) 

3 S 0.95 (1) 1 (1) 0.07 (1) 1 (1) 

C 1 (1) 1 (1) 0.37 (1) 1 (1) 

4 S 1 (1) 1 (1) 0.22 (1) 1 (1) 

C 1 (0.11) 0.95(0.03) 1 (1) 1 (1) 

5 S 1 (1) 1 (1) 1 (1) 1 (1) 

C 1 (0.47) 1 (0.98) 1 (1) 0.97 (1) 

 𝜋 0.78(0.96) 0.91 (1) 1 (1) 1 (1) 

50 1 S 1 (0.86) 0 (1) 1 (1) 0.92 (1) 

C 1 (0.67) 1 (0.88) 1 (1) 1 (1) 

2 S 1 (1) 1 (1) 1 (0.86) 1 (0.97) 

C 1 (0.33) 1 (0.19) 1 (1) 1 (1) 

3 S 1 (1) 1 (1) 1 (1) 0.64 (1) 

C 1 (1) 0.18 (1) 1 (1) 1 (1) 

4 S 1 (0.59) 1 (0.92) 0.3 (1) 1 (1) 

C 1 (0) 0.99 (0) 0.65 (1) 1 (1) 

5 S 1 (1) 1 (1) 1 (0.99) 1 (0.98) 

C 1 (1) 1 (0.25) 1 (1) 0.99 (1) 

 𝜋 1 (0.11) 1 (1) 1 (0.94) 1 (1) 

100 1 S 1 (1) 1 (1) 1 (1) 1 (1) 

C 1 (0.13) 1 (0.62) 1 (0.62) 1 (1) 

2 S 1 (1) 1 (1) 1 (1) 1 (1) 

C 0.99(0.02) 1 (0.31) 1 (0.31) 1 (1) 

3 S 1 (1) 1 (1) 0.81 (1) 0.99(0.65) 

C 1 (0.65) 1 (0.96) 1 (0.96) 1 (1) 

4 S 1 (0.21) 1 (0.45) 0.16(0.45) 1 (0.73) 

C 0.96 (0) 1 (0) 1 (0) 1 (1) 

5 S 1 (1) 1 (1) 1 (1) 0.08(0.15) 

C 1 (0.94) 1 (0.91) 1 (0.91) 1 (1) 

 𝜋 1 (0.03) 1 (0.48) 0.47(0.48) 1 (0.55) 

1000 1 S 1 (0.12) 1 (0.48) 1 (0.03) 1 (0) 

C 0.99(0.26) 1 (0.12) 1 (0.12) 1 (0) 

2 S 1 (0.08) 1 (0.49) 0.93 (0) 0.97 (0) 

C 1 (0) 1 (0) 1 (0) 1 (0) 1 (0.02) 

3 S 1 (0.78) 1 (0.31) 1 (0.01) 1 (0) 

C 1 (1) 1 (0.32) 1 (0.02) 0.99 (0) 

4 S 1 (0) 1 (0.4) 1 (0) 1 (0) 

C 1 (0) 1 (0) 1 (0) 1 (0.03) 

5 S 1 (0.23) 1 (0.53) 1 (0) 1 (0) 

C 1 (0.13) 1 (0) 1 (0) 0.67 (0) 

 𝜋 1 (0) 1 (0.99) 1 (0.77) 1 (0) 
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Table 4.Coverage probabilities under scenario 2, considering different sample sizes and prevalence values, calculated using 

Naïve Bayesian network and k-modes algorithm (values in the parentheses) 

 
N 

 
Doctors 

 Prevalence 

0.1 0.2 0.3 0.5 

20 1 S 0.31 (1) 1 (0.99) 1 (1) 1 (1) 

C 1 (0) 1 (0) 1 (0.71) 1 (1) 

2 S 1 (1) 1 (1) 1 (1) 1 (1) 

C 0 (0) 0 (0.01) 1 (0.95) 1 (0) 

3 S 0.31 (1) 1 (1) 1 (1) 1 (1) 

C 0 (0) 0 (0.03) 0.49 (0) 1 (1) 

4 S 1 (1) 1 (0.99) 0.74 (1) 1 (1) 

C 1 (0) 1 (0) 1 (0.27) 1 (1) 

5 S 0.24 (1) 1 (1) 0 (1) 1 (1) 

C 1 (0) 1 (0) 0.97 (0.7) 1 (0.9) 

 𝜋 1 (1) 1 (1) 1 (1) 0.95 (1) 

50 1 S 1 (1) 1 (0.99) 1 (1) 1 (1) 

C 0.08 (0) 1 (0) 1 (0) 1 (0) 

2 S 1 (1) 0.08 (1) 1 (1) 1 (0.86) 

C 1 (0) 1 (0) 1 (0) 1 (0.04) 

3 S 1 (1) 1 (0.99) 1 (1) 1 (1) 

C 1 (0) 1 (0) 0.9 (0) 0.3 (0) 

4 S 1 (1) 0.98 (1) 0.2 (0.89) 1 (1) 

C 1 (0) 1 (0) 1 (0) 1 (0) 

5 S 1 (1) 1 (1) 1 (1) 1 (1) 

C 1 (0) 0 (0) 1 (0) 1 (0) 

 𝜋 1 (1) 1 (1) 1 (0.74) 1 (0.26) 

100 1 S 1 (1) 0.92 (1) 1 (1) 1 (1) 

C 1 (0) 0.99 (0) 1 (0) 1 (0) 

2 S 1 (1) 1 (1) 0.95 (1) 1 (1) 

C 1 (0) 0.34 (0) 1 (0) 1 (0) 

3 S 1 (1) 1 (1) 1 (0.97) 1 (1) 

C 1 (0) 1 (0) 1 (0) 1 (0) 

4 S 1 (1) 1 (1) 1 (1) 0.99 (1) 

C 1 (0) 1 (0) 1 (0) 0.81(0.94) 

5 S 1 (1) 1 (1) 1 (1) 1 (1) 

C 0.99 (0) 1 (0) 1 (0) 1 (0) 

 𝜋 1 (1) 1 (1) 1 (1) 1 (0.95) 

1000 1 S 1 (1) 1 (1) 1 (0.01) 1 (0) 

C 0.99 (0) 1 (0) 1 (0) 1 (0) 

2 S 1 (1) 1 (1) 0.93 (1) 0.97 (0) 

C 1 (0) 1 (0) 1 (0) 1 (0) 

3 S 1 (1) 1 (1) 1 (1) 1 (0) 

C 1 (0) 1 (0) 1 (0) 0.99 (0) 

4 S 1 (1) 1 (1) 1 (0.19) 1 (0) 

C 1 (0) 1 (0) 1 (0) 1 (0) 

5 S 1 (1) 1 (1) 1 (0.7) 1 (0) 

C 1 (0) 1 (0) 1 (0) 0.67 (0) 

 𝜋 1 (1) 1 (1) 1 (0.03) 1 (0) 

 

K-modes algorithm is much faster than Naïve 

Bayesian network, but it has a 

weakerperformance compared to that of the 

Naïve Bayesian network. As the number of 

records increases, unlike Naïve Bayesian 

network, we observe a high decrease in coverage 

probabilities. As if the algorithm fails to find the 

similarities by an increase in number of records. 
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In the first scenario, where the sensitivities were 

set to high levels and specificities to low levels, 

the k-modes algorithm is more efficient than the 

second scenario. It can be deduced that it 

performs well for lower levels of specificities 

than the higher ones, but nevertheless it is 

successful in covering sensitivities. It has the best 

performance for small number of records, 

prevalence of 0.3 and high level ofsensitivities. 

Application: Diabetic retinopathy data 

Diabetic Retinopathy (DR) is the leading 

cause of visual loss and blindness among 

working-agepeople with diabetes in developed 

and developing countries. One problem in DR 

diagnosis is that there is no test which could 

precisely detect the true disease status. 

A preliminary study in research center of 

ophthalmology of Shahid Beheshti University of 

Medical Science (sbmu) has been conducted to 

design a network for diagnosis of diabetic 

retinopathy. The diagnosis of DR was through the 

fundus photography of 150 patients' retina was 

screened by 5 doctors. Each doctor, observed the 

retina photograph of each patient, independently, 

and made their diagnosis with 0 as no DR and 1 

as with DR (Table (5)). In 27 cases, all 5 doctors 

diagnosed the patients as with DR, and in 88 

cases all the doctors randomly agreed on 

patientswith no DR. 

 
Table 5.Diabetic Retinopathy dataset of 5 doctors for 150 patients 

Doctor1 Doctor2 Doctor3 Doctor4 Doctor5 N 

1 1 1 1 1 27 

1 1 1 1 0 13 

1 1 1 0 1 1 

1 1 1 0 0 5 

0 1 1 1 0 1 

1 1 0 0 0 3 

1 0 0 1 0 1 

0 1 1 0 0 2 

1 0 0 0 0 2 

0 1 0 0 0 5 

0 0 1 0 0 2 

0 0 0 0 0 88 

 

The diagnostic test results of 5 doctors using 

Naïve Bayesian network with the structure of 

Figure (1), and the k-modes algorithm are applied 

to obtain the parameters of interest for five 

different doctors along with their PPV, NPV 

(Table (6)). As wecan see in Table (6), the two 

method of Naïve Bayesian network and k-modes 

algorithm (values in the parentheses) show a 

similar level of performances, which is very 

promising for the k-modesmethod considering its 

high speed in calculations. Doctors 2 and 3 have 

the highest and doctor5 lowest sensitivity and 

doctors 4 and 5 have the highest and doctor 2 has 

the lowest specificity.

Table 6.The diabetic retinopathy diagnostic test results of 5 doctors for 150 patients using Naïve Bayesian networks and k-modes 

algorithm (values in the parentheses) 

Doctor Sensitivity Specificity PPV NPV 

1 0.970(0.979) 0.950 (0.951) 0.900 (0.902) 0.990 (0.990) 

2 1.000 (1.000) 0.900 (0.902) 0.830 (0.825) 1.000 (1.000) 

3 1.000 (1.000) 0.950 (0.951) 0.910 (0.904) 1.000 (1.000) 

4 0.870 (0.872) 1.000 (1.000) 1.000 (1.000) 0.940 (0.944) 

5 0.590 (0.596) 1.000 (1.000) 1.000 (1.000) 0.840 (0.843) 

Prevalence 0.320 (0.315) 
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Doctors 4 and 5 have the best PPV and doctors 

2 and 3 together have the best NPV. Also the 

estimate for the prevalence of the disease is 0.32. 

Results 

Naïve Bayesian networks and k-modes 

algorithm were applied to classify patients into 

diseased and non-diseased categories. In the real 

case study of diabetic retinopathy, sensitivities 

for all doctors, except for one, were high enough 

to detect patients with retinopathy and 

specificitieswere high to almost perfectly detect 

non-diseased patients. 

In the simulation study, for reasonable values 

of sensitivities and specificities, as the sample 

size increases the coverage probabilities of Naïve 

Bayesian network converges to the pre-

specifiedvalue of 95% and higher. But for the k-

modes algorithm it decreases to almost zero. In a 

nutshell, NaïveBayesian network is much more 

efficient than the k-modes algorithm and also 

much more time consuming. But there are cases 

like: small number of records, prevalence of 

0.3and high level of sensitivities, that k-modes 

algorithm achieve better or the same results than 

Naïve Bayesian network. Also the Naïve 

Bayesian network's performance seems to be 

promising for not very large data bases and small 

prevalence values. 

Discussion and Conclusion 

In this paper we only investigated a simple 

case of diagnostic accuracy assessment where a 

fixed number of doctors assess the same sets of 

patients. It can be extended to a more complex 

model, such as repeated assessment of the 

doctors, assessment of different doctors on 

different sets of patients. Also the assumption of 

conditional independence, which can be violated 

in somecircumstances, should be taken into 

account for a better estimation of diagnostic 

criteria. 
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