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Introduction: A cross-over design is a repeated measurements design such that each experimental unit 

receives different treatments during different time periods.  Lower order cross-over designs such as the two 

treatments, two periods and two sequences C (2, 2, 2) design have been discovered to be inefficient and 

erroneous in their analysis of treatments efficacy. In this regard, higher order cross-over designs have been 

recommended and developed like: the two treatments, three periods and four sequence C (2, 3, 4) design; and 

the two treatments, four periods and four sequence C (2, 4, 4) designs. However, there still exists more efficient 

higher order cross-over designs for two treatments which can be used in bioequivalence experiments. This 

study gives a new design and analysis for two treatments, five periods and four sequence C (2, 5, 4) cross-over 

design that gives more precise estimates and provides estimates for intra subject variability.  

Method: A hypothetical case study was considered on 160 experimental units which are assumed to be 

randomly selected from a given population. A cross over design of two treatments (A, B) in five periods whose 

sequences are given by BABAA, ABABB, BAABA and ABBAB were used. Each of the experimental units 

was used as its own control. The estimates for both direct treatments and treatments carry-over effects were 

obtained using best linear unbiased estimation method (BLUE). We simulated data for two treatments in five 

periods and four sequences and used it to test the null hypotheses of no significant differences in both the direct 

treatments and treatments carry-over effects using the 𝑡 − test. The subject profiles plots were used to 

determine the general trend so as to enable an experimenter make a decision on which of the two treatments 

under consideration was more efficacious. 

Results: In testing the null hypothesis of no significant difference in carry-over effects for the two treatments 

(A&B), the calculated value was found to be 0.55 which was less than the tabular value at 156 degrees of 

freedom at 95 % confidence level, hence the null hypothesis was not rejected. Similarly, In testing the null 

hypothesis of no significant difference in treatment effects for A&B, the calculated value was found to be 

11.73 which was higher than the tabular value at 156 degrees of freedom at 95% confidence level hence the 

null hypothesis was rejected, and it was concluded that there was indeed a significant difference in the 

treatment effects. The mean subject profiles plots for a majority of periods and their respective sequences 

indicated that the general trend implied that treatment B was more effective as compared to treatment A. 

Conclusion: In cross-over designs, the presence carry-over effects affect the precision of treatments effects 

estimates in an experiment. Apart from increasing the washout periods, increasing the number of periods in 

cross-over designs can help in eliminating the carry-over effects. The C (2, 5, 4) design in this study gives 

more precise estimates and can provide estimates for intra subject variability. The simulated data indicated 

that there was significant difference in the treatment effects, and in comparison of the two treatments, treatment 

B was more effective as compared to treatment A. 
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Introduction 

A cross-over design is a repeated measurements 

design such that each experimental unit receives 

different treatments during the different time periods. 

In cross-over designs, a direct treatment effect is the 

effect of treatment at the time of its application, while 

a carry-over treatment effect is the effect of a 

treatment that persist after the end of a treatment 

period. Carry-over effects appear when the response 

to a current treatment is affected by the treatment that 

was applied in the previous period.  

Cross-over designs are popular for comparing 

several non-curative treatments for their efficacy. 

The use of cross-over designs to compare the 

efficacy of two or more treatments has the advantage 

that each individual is used as its own control [1]. 

Additionally, a cross-over trial has the advantage that 

fewer participants are needed than the equivalent 

parallel group trial, and, from a clinical point of view, 

the experimental treatments are tested within each 

subject which eliminates many of the confounding 

factors that might occur in studies with a different 

design[2].    

For convenience, a cross-over design with 𝑡 

treatments,𝑝 periods and 𝑠 sequences is denoted as  

C(𝑡, 𝑝, 𝑠) [3].  
The most common cross-over design that has been 

widely studied is the C (2, 2, 2) [4]. Designs that have 

two treatments and two periods were frequently 

utilized by researchers, but it has been shown that  

these designs lack the structure to test for carry-over 

and also produce biased direct treatment effects 

under the presence of carry-over effects [5].  

Critiques of the  C(2, 2, 2) with sequences  AB and 

BA  allude that the carry-over effects  is confounded 

with sequence by period effects leading to erroneous 

analyses[6,7]. The carry-over effects may arise for a 

variety of reasons such as; an inadequate washout 

period, a change in physiological or psychological 

state of the patients caused by the treatment in the 

first period, or if the treatment effect depends on the 

mean levels [5]. Potential solutions to these problems 

have been considered, but these designs are not 

normally recommended in practice [8]. Two 

strategies can be used to obtain higher order cross-

over designs which are used to overcome the 

problems inherent in the C (2, 2, 2) design. The first 

one is to extend the number of sequences such as 

Baalam’s C (2, 2, 4) design [4]. Secondly, the design 

can be extended by adding a third period or more and 

repeating one of the two treatments [9]. In this 

regard, higher order designs that involve more than 

two periods are preferable and are becoming more 

widely used in practice [10]. 

In higher order five period cross-over designs with 

two treatments, thirty two possible  treatment 

sequences can result; AAAAA, BAAAA, ABAAA, 

AABAA, AAABA, AAAAB, BBAAA, 

BABAA,BAABA, BAAAB, ABBAA, ABABA, 

ABAAB, AABBA, AABAB, AAABB and their 

duals. This paper considered the most optimum and 

robust for missing data design (𝐷1) with sequences 

BABAA, ABABB, BAABA, and ABBAB.  

It outlines the BLUE method of estimating direct 

treatments and first order carry-over effects in the set 

of five period designs, assuming a traditional model 

that specifies first order carry-over effect. The 

unbiased estimates of treatment and carry-over 

effects were formulated using a strategy outlined by 

[6, 9, and 11].  The null hypotheses of no significant 

differences in both the direct treatments and 

treatments carry-over effects were analyzed using 

the 𝑡 − test, from the simulated data. In order to 

indicate the general trend so as to enable an 

experimenter make a decision on which of the two 

treatments under consideration was to be favored, the 

subject profiles plots were used. 

Methods  

Assume that the primary goal is to compare two 

treatments A and B used in a study. By estimating the 

treatment contrasts  𝜏𝐴 − 𝜏𝐵 and period effects 𝜋1 

and𝜋2; first order carry-over effects  𝜆𝐴 , 𝜆𝐵 and 𝜇 

are regarded as nuisance parameters. Also assume 

that the response variable is continuous and that there 

is one response from each subject in each period. 

Finally, it is assumed that each treatment has simple 

first order carry-over effect that does not interact 

with direct effect of the treatment in the subsequent 
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period. This model then assumes the following for 

the response of individual 𝑦𝑖𝑗. 

If 𝑦𝑖𝑗𝑘 denotes the observed response of subject 

𝑗(𝑗 = 1,2, … , 𝑛) in period 𝑖(𝑖 = 1, … , 𝑝), 
Then, 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜋𝑖 + 𝜏𝑑(𝑖𝑗) + 𝜆𝑑(𝑖−1),𝑗 + 𝛽𝑗 + 𝑒𝑖𝑗, (1)                                                                                 

Where 𝜋𝑖the effect of the first period is, 𝜏𝑑(𝑖𝑗) is the 

effect of treatment A and B, and  𝜆𝑑(𝑖−1,𝑗) is the 

simple first order carry-over effect of treatment A. It 

is assumed that all effects are fixed effects. 𝛽𝑗 is the 

effect of patient j and 𝑒𝑖𝑗 is the error term. The 

random subject effect  𝛽𝑗, and the experimental error, 

𝑒𝑖𝑗 are assumed to be mutually independently 

distributed as N (0,𝜎2). 

Consider the estimation of contrasts among direct 

and residual treatment effects under (1) let  

𝜏𝐴 − 𝜏𝐵, and 𝜆𝐴 − 𝜆𝐵 be the direct treatment effects 

and carry-over effects to be estimated respectively, 

their best linear unbiased estimators can be written as 

linear combinations of cell means; for example, 

𝜏𝐴 − 𝜏𝐵  =∑ ∑ 𝑎𝑖𝑗𝑦
𝑖𝑗

              (2) 

and 

𝜆𝐴 − 𝜆𝐵  =∑ ∑ 𝑏𝑖𝑗𝑦
𝑖𝑗

              (3) 

 The estimability of  𝜏𝐴 − 𝜏𝐵 and  𝜆𝐴 − 𝜆𝐵  

ensures that 

 ∑ 𝑎𝑖𝑗
𝑝
𝑖=1   = 0             (4) 

And  

 ∑ 𝑏𝑖𝑗 = 0𝑝
𝑖=1 ,            (5) 

For𝑗 = 1, . . . , 𝑠 .  

2.1: Student’s 𝒕-Test  

2.1.1: Determination of Variance for the C 

(2, 𝟓, 𝟐)Cross-Over Design  

Let  the kth subject in group 1 have , k = 1,2, … , n1 

,the kth subject in group 2,  k = 1,2, … , n2, the kth 

subject in group3, k = 1,2, … , n3, and the kth subject 

in group 4, k = 1,2, … , n4. 

Assuming that s11
2  is the variance of the first group 

and s21
2  is the variance of the second group, the 

pooled variance for the first two groups is given by, 

s1
2= 

(n1−1)s11
2 +(n2−1)s21

2

(n1+n2−2)
    (6) 

Similarly, assuming that s31
2  is the variance of the 

third group and s41
2  is the variance of the fourth 

group, the pooled variance for the two groups is 

given by, 

s2
2= 

(n3−1)s31
2 +(n4−1)s41

2

(n3+n4−2)
   (7) 

2.1.2 Determination of Variance for the C 

(2, 𝟓, 𝟒)Cross-Over Design  

Let (τA − τB)1= 
1

k
 (f1 − f2), and (τA − τB)2= 

1

m
 (f3 − f4)                            (8) 

Similarly, 

Let (λA − λB)1= 
1

p
 (f5 − f6) and (λA − λB)2= 

1

q
 (f7 − f8)   (9) 

Where; 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7&𝑓8 are treatment 

Contrasts for groups 1, 2, 3 and 4 respectively, The variances of these estimators are.  

V(τA − τB)1= 
s1

2

k2
[

1

n1
+

1

n2
]   (10) V(τA − τB)2= 

s2
2

m2
[

1

n3
+

1

n4
]   (11)   
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Note that n1, n2, n3, & n4 are the sample sizes for 

groups 1, 2, 3 & 4 respectively. 

A combined estimator of  (τA − τB)W can be 

obtained by taking a weighted average of the two 

estimators where the weights are taken to be 

inversely proportional to the variances of the 

estimators. That is,       

 

 W1 =
1

V(τA−τB)1
    (12  

W2 =
1

V(τA−τB)2
    (13)  

Using (8), (9), (12) and (13), the combined estimator 

for treatment effects is given by, 

 (τA − τB)W  = 
W1(τA−τB)1+W2(τA−τB)2

W1+W2
  (14)   

Thus the variance of (14) which forms the combined 

variance estimator is given by [1] as ;   

 

V(τA − τB)W  =(
W1

W1+W2
)2 V(τA − τB)1 +    (

W2

W1+W2
)2 V(τA − τB)2        (15) 

The same procedure can be used to obtain (λA −

λB)W  and V(λA − λB)W  . 

From (14) and (15), the calculated 𝑡 values for 

treatment effects and carry-over effects are given by, 

 

𝑡τ= 
(τA−τB)W

√V(τA−τB)W
  ,     (16) 

and 

𝑡c= 
(λA−λB)W

√V(λA−λB)W
    (17) 

A simple approximation to the degrees of freedom of 

the estimated variance of the combined estimator is 

obtained using the result given by [12] . 

fw =
(a1V1+a2V2)2

(a1V1)2

f1
+

(a2V2)2

f2

     (18) 

Where, a1 = 
W1

W1+W2
  ,  a2  = 

W2

W1+W2
 ,V1 = Var(τA − τB)1,V2 = Var(τA − τB)2 , 

 and 

VW = Var(τA − τB)W    (19) 

 

In this case, f1 , f2 and fw  are assumed to be the 

degrees of freedom respectively for the estimates of 

V1, V2& VW. 

By comparing the tabulated value at fw degrees of 

freedom in (18) with the calculated value from (16) 

and (17), the null hypothesis is rejected if the 
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calculated values are greater than the tabulated 

values at 95% confidence level. 

2.2: Plotting the Data   

2.2.1: Subject Profiles Plot  

The objective of cross-over trial is to focus attention 

on within- individual treatment differences. A good 

plot for displaying these differences is the subject 

profiles plot. In this case, subject profiles graphs are 

plotted for each group to represent the change in each 

individual’s response over two treatments periods.  

For each value of 𝑘, the pairs of points (𝑦11𝑘, 𝑦12𝑘,

𝑦13𝑘, 𝑦14𝑘, 𝑦15𝑘), (𝑦21𝑘, 𝑦22𝑘, 𝑦23𝑘, 𝑦24𝑘, 𝑦25𝑘),  

and  

(𝑦31𝑘, 𝑦32𝑘, 𝑦33𝑘, 𝑦34𝑘, 𝑦35𝑘), (𝑦41𝑘, 𝑦42𝑘, 𝑦43𝑘,

𝑦44𝑘, 𝑦45𝑘) , are plotted. 

This plot helps to identify the general trend and 

ascertain the effectiveness of the new treatment (B) 

with regard to the standard treatment (A).

Results  3.1 Construction of Design 1: BABAA, BAABA 

and their duals  

Table 1: Expected values for C (2× 𝟓 × 𝟒) Design 3 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BABAA μ + π1 + τB μ + π2 + τA 

+ λB 

μ + π3 + τB 

+ λA 

μ + π4 + τA 

+ λB 

μ + π5 + τA 

+ λA 

ABABB μ + π1 + τA μ + π2 + τB 

+ λA 

μ + π3 + τA 

+ λB 

μ + π4 + τB 

+ λA 

μ + π5 + τB 

+ λB 

BA ABA μ + π1 + τB μ + π2 + τA 

+ λB 

μ + π3 + τA 

+ λA 

μ + π4 + τB 

+ λA 

μ + π5 + τA 

+ λB 

ABBAB μ + π1 + τA μ + π2 + τB 

+ λA 

μ + π2 + τB 

+ λB 

μ + π4 + τA 

+ λB 

μ + π5 + τB 

+ λA 

 

The Contrasts𝑓1, 𝑓2, 𝑓3and 𝑓4 are chosen in such a 

way that (2) and (4) are satisfied to give; 

𝑓1 =
1

4
(Y11 − Y12 − Y13 + Y14 + Y15) , 

𝑓2 =
1

4
(Y21 − Y22 − Y23 + Y24 + Y25), 

 𝑓3 = 
1

12
(Y31 − Y32 + Y33 − Y34 + Y35) 

 and 𝑓4 =
1

12
(Y41 − Y42 + Y43 − Y44 + Y45)  

respectively, whose expected values are given by; 
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E (𝑓1)    =
1

4
 [μ + (π1 − π2 − π3 + π4 + π5) + τA ],   (24) 

E (𝑓2)   =
1

4
 [μ + (π1 − π2 − π3 + π4 + π5) + τB ],    (25) 

E (𝑓3) =
1

12
 [μ+ (π1 − π2 + π3 − π4 + π5) + 3τA ],   (26) 

E (𝑓4) = 
1

12
[μ + (π1 − π2 + π3 − π4 + π5) + 3τB ]    (27) 

The linear combination of (𝑓1 − 𝑓2) + (𝑓3 − 𝑓4)  from (24), (25), (26), and (27) forms an unbiased estimate of the 

treatment effect  𝜏𝐴 − 𝜏𝐵 .     

 Thus, 

𝜏𝐴 − 𝜏𝐵 = 2[(f1 − 𝑓2) + (𝑓3 − 𝑓4)]    (28) 

Similarly, the Contrasts   𝑓5, 𝑓6, 𝑓7and 𝑓8 are chosen 

in such a way that (3) and (5) are satisfied to give; 

𝑓5 =
1

2
 (Y11 − 2Y12 − Y13 + Y14 + Y15) , 

𝑓6 =
1

2
 (Y21 − 2Y22 − Y23 + Y24 + Y25) =  𝑓7 = 

1

2
(Y31 + Y32 + Y33 − Y34 − Y35)  and 𝑓8 =

1

2
 (Y41 +

Y42 + Y43 − Y44 − Y45)=  respectively, whose 

expected values are given by; 

 

𝐸(𝑓5) =
1

2
[(π1 − 2π2 − π3 + π4 + π5) − λB]    (29) 

𝐸(𝑓6)= 
1

2
 [(π1 − 2π2 − π3 + π4 + π5) −λA]    (30) 

𝐸(𝑓7) =
1

2
[ μ +(π1 + π2 + π3 − π4 − 2π5) − λB    (31) 

𝐸(𝑓8)= 
1

2
 [μ +(π1 + π2 + π3 − π4 − 2π5)−λA]   (32) 

The linear combination of (𝑓5 − 𝑓6) + (𝑓7 − 𝑓8)  

from (29), (30), (31), and (32) forms an unbiased 

estimate of the treatment effect  𝜆𝐴 − 𝜆𝐵 .     

Thus, 

𝜆𝐴 − 𝜆𝐵  = (𝑓5 − 𝑓6) + (𝑓7 − 𝑓8)     (33) 

3.2: Data analysis    

Table 2: Hypothetical experimental data. 

 

Sequences  Periods  Treatments 1 2 3 4 5 6 7 8 Mean(𝜇𝑖) 𝜎2 

1 1 B 2.4 7.1 8.0 2.3 2.9 6.4 7.0 2.9 4.8750  

1 2 A 4.1 7.6 9.7 1.8 2.7 5.6 5.5 2.4 4.9250  

1 3 B 1.9 0.5 0.6 8.7 15.7 5.3 3.7 9.8 5.7750  

1 4 A 6.4 0.5 2.8 3.8 9.5 5.4 4.6 5.8 4.8500  

1 5 A 0.1 5.2 6.2 4.4 2.4 7.5 2.1 4.2 4.0125 10.1057 
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2 1 A 1.0 3.0 6.9 7.0 5.9 5.1 4.9 2.4 4.5250  

2 2 B 1.6 0.8 1.5 7.8 13.1 2.4 2.2 8.6 4.7500  

2 3 A 1.5 0.7 1.5 7.8 13.2 2.5 2.2 8.7 4.7625  

2 4 B 2.9 3.3 2.0 7.5 8.2 2.5 5.1 9.4 5.1125  

2 5 B 1.4 3.4 0.6 0.7 0.2 3.4 3.0 0.9 1.7000 11.6447 

3 1 B 0.5 2.1 1.1 0.5 0.6 1.9 4.2 0.9 1.4750  

3 2 A 3.7 1.2 2.1 4.1 3.6 3.9 2.8 7.5 3.6125  

3 3 A 7.2 3.7 4.8 6.8 6.3 5.8 3.9 13.4 6.4875  

3 4 B 2.3 5.1 7.2 2.7 5.3 6.7 3.6 1.2 4.2625  

3 5 A 5.7 6.6 8.1 5.2 6.7 8.4 7.4 1.9 6.2500 7.6876 

4 1 A 3.6 4.3 6.0 12.3 10.7 2.7 5.9 3.8 6.1625  

4 2 B 13.3 3.6 2.64 8.6 9.2 1.5 4.7 3.8 5.9125  

4 3 B 2.0 4.5 3.8 1.8 1.3 1.5 3.6 1.5 2.5000  

4 4 A 2.0 5.3 5.4 1.3 2.2 2.5 5.3 2.2 3.2750  

4 5 B 4.7 1.4 2.9 2.0 3.2 2.4 1.5 3.4 2.6875 8.7971 

 

Table 3: Expected values for design 𝑫𝟐𝟏 

 

Sequence 𝑝𝑒𝑟𝑖𝑜𝑑1 𝑝𝑒𝑟𝑖𝑜𝑑2 𝑝𝑒𝑟𝑖𝑜𝑑3 𝑝𝑒𝑟𝑖𝑜𝑑4 𝑝𝑒𝑟𝑖𝑜𝑑5 

BABAA 𝐸(𝑌11) =4.875 𝐸(𝑌12) =4.925 𝐸(𝑌13) =5.775 𝐸(𝑌14) =4.850 𝐸(𝑌15) =4.0125 

ABABB 𝐸(𝑌21) =4.525 𝐸(𝑌22) =4.750 𝐸(𝑌23) =4.763 𝐸(𝑌24) =5.113 𝐸(𝑌25) =1.700 

BAABA 𝐸(𝑌31) =1.475 𝐸(𝑌32) =3.613 𝐸(𝑌33) =6.488 𝐸(𝑌34) =4.263 𝐸(𝑌35) =6.250 

ABBAB 𝐸(𝑌41) =6.163 𝐸(𝑌42) =5.913 𝐸(𝑌43) =2.500 𝐸(𝑌44) =3.275 𝐸(𝑌45) =2.688 

 

The variances of the four groups from table (2) are 

given by; Substituting the variances 𝑠11
2 = 10.1057 

𝑠21
2 = 11.6447 𝑠31

2 = 7.6876 𝑠41
2 = 8.7971 in table (2) to 

(6) and (7) gives, 

 

 

𝑠1
2= 10.8752     (34) 

And 

𝑠2
2= 8.24235    (35) 

 

 

Substituting (34) and (35) on (10) and (11) 

respectively using the contrasts given in 24, 25, 26 & 

27 gives,  

V(𝜏𝐴 − 𝜏𝐵)1 =   0.033985    (36) 

V(𝜏𝐴 − 𝜏𝐵)2 =   0.00286   (37) 

Substituting the values of table 3 on the contrasts 

given in 24, 25, 26 & 27 gives, 

 

 

 

𝑓1=8.8125,  𝑓2=1.55, 𝑓3 = 6.337,  𝑓4=2.163   (38) 
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Substituting (38) on (8) gives, 

(𝜏𝐴 − 𝜏𝐵)1= 3.63125   (39) 

(𝜏𝐴 − 𝜏𝐵)2= 0.34783   (40) 

Substituting (36) and (37) to (12) and (13) gives, 

𝑊1 = 29.42474621 & 𝑊2 = 349.6503497   (41) 

Substituting (39), (40), & (41) to (14) and (15) respectively gives, 

(𝜏𝐴 − 𝜏𝐵)𝑤=0.602697235   (42) 

𝑉(𝜏𝐴 − 𝜏𝐵)𝑤= 0.002637999729  (43) 

 

Similarly, substituting (34) and (35) on (10) and (11) respectively using the contrasts given in 29, 30, 31 & 

32 gives,  

V(𝜆𝐴 − 𝜆𝐵)1 =   0.13594  (44) 

V(𝜆𝐴 − 𝜆𝐵)2 =   0.10303  (45) 

Substituting the values of table 3 on the contrasts 

given in 29, 30, 31 & 32 gives, 

𝑓5 = -0.94375,  𝑓6= -1.4625, 𝑓7 = 0.5281,  𝑓8 = 0.18025  (46) 

Substituting (46) on (9) gives, 

(𝜆𝐴 − 𝜆𝐵)1= 0.259375  (47) 

(𝜆𝐴 − 𝜆𝐵)2= 0.17392   (48) 

Substituting (44) and (45) to (12) and (13) gives, 

𝑊3 = 7.3562 & 𝑊4 = 9.706    (49) 

Substituting (47), (48), & (49) to (14) and (15) respectively gives, 

(𝜆𝐴 − 𝜆𝐵)𝑤 = 0.098936    (50) 

𝑉(𝜆𝐴 − 𝜆𝐵)𝑤 = 0.0333404   (51) 

3.1.1 𝒕-Test For Treatment Effects  

The hypothesis to be tested was, 

𝐻𝑂: [𝜏𝐴 − 𝜏𝐵]𝑊 = 0 

𝐻1: [𝜏𝐴 − 𝜏𝐵]𝑊 ≠ 0 

Substituting (34) and (35) on (16) gives 

𝑡τ = 11.73442533   (52) 

3.1.2 Degrees of Freedom for Treatment Effects 

Let, 

 

𝑎1  = 
𝑊1

𝑊1+𝑊2
    (53) 
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𝑎2  = 
𝑊2

𝑊1+𝑊2
    (54) 

Substituting (41) to (37) and (38) respectively gives 

𝑎1  = 0.077622472,  (55) 

and 

𝑎2 = 0.922377527.  (56) 

Substituting (36), (37), (55), and (56) to (18) with 𝑓1 =𝑓2  = 78   degrees of freedom gives; 

𝑓𝑤 = 156     (57) 

 

By comparing the tabulated value at 156 degrees of 

freedom given in (57) with the calculated value from 

(52), the calculated value is greater than the tabulated 

value at 95% level of significance hence the null 

hypothesis is rejected   

3.1.3 𝒕-Test For Carry-Over Effects 

The hypothesis to be tested was, 

𝐻𝑂: (𝜆𝐴 − 𝜆𝐵)𝑊 = 0 

𝐻1: (𝜆𝐴 − 𝜆𝐵)𝑊 ≠ 0 

Substituting (50) and (51) to (17) gives 

𝑡𝐶= 0.541837436   (58) 

 3.1.4 Degrees Of Freedom for Carry-Over Effects  

Let, 

𝑎3  = 
𝑊3

𝑊3+𝑊4
    (59) 

𝑎4  = 
𝑊4

𝑊3+𝑊4
    (60) 

Substituting (49) to (43) and (44) respectively gives 

𝑎1  = 0.431140496,  (61) 

and 

𝑎2 = 0.568859503   (62) 

Substituting (45), (46), (61), and (62) to (18) 

with 𝑓1 =𝑓2  = 78   degrees of freedom gives 

Then 𝑓𝑤 = 155.4    (63) 

 

By comparing the tabulated value at 155.4 degrees of 

freedom given in (63) with the calculated value from 

(58), the calculated value is less than the tabulated 

value at 95% confidence level hence the null 

hypothesis is not rejected.  

3.2: Subject Profiles Plots 
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There were high between individuals variability 

since there are the low mean values of some 

individuals in group 3. However, from figures 1, 2, 

3, 4, 5, and 6, the general trend implies a direct 

treatment effect in favor of treatment B, this implies 

that treatment B is more efficacious as compared to 

treatment A. 

Discussion  

In testing the null hypothesis of no significant 

difference in carry-over effects for the two 

treatments (A&B), the calculated value was found to 

be 0.55 which was less than the tabular value at 156 

degrees of freedom at 95 % confidence level, hence 

the null hypothesis was not rejected. Similarly, In 

 
Figure 1. Mean subject profiles for periods 1 and 2 of the first two 

sequences/groups   

 

 
Figure 2. Mean subject profiles for periods 2 and 3 of the first 

two sequences /groups 

 
Figure 3.  Mean subject profiles for periods 3 and 4 of the first two 

sequences /groups 

 
Figure 4.  Mean subject profiles for periods 1 and 2 of the last 

two sequences/groups   

 
Figure 5.  Mean subject profiles for periods 3 and 4 of the last two 

sequences/groups   

 
Figure 6.  Mean subject profiles for periods 4 and 5 of the last 

two sequences /groups 
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testing the null hypothesis of no significant 

difference in treatment effects for A&B, the 

calculated value was found to be 11.73 which was 

higher than the tabular value at 156 degrees of 

freedom at 95% confidence level hence the null 

hypothesis was rejected, and it was concluded that 

there was indeed a significant difference in the 

treatment effects. The mean subject profiles plots for 

a majority of periods and their respective sequences 

indicated that the general trend implied that 

treatment B was more effective as compared to 

treatment A. This analysis confirms the assertion by 

Hills and Armitage in the year 1979, that higher order 

cross-over designs possess the structure to test for 

carryover effects and also produce biased direct 

treatment effects under the presence of carry-over 

effects [2,10]. 

The main problem with clinical trials practitioners 

who apply cross-over designs is the presence of 

carry-over effects is that, in any given period, an 

observation from an experimental unit can be 

affected not only by the treatment effect in which it 

is applied, but also by the effect of a treatment 

applied in the preceding period. 

One way to avoid the impact of carry-over is to insert 

a washout period between two successive periods 

with the aim of eliminating the carry-over effect. The 

washout periods effectively increases the interval 

between the observed periods and can help in 

overcoming the carry-over effect if the carry-over 

effect is not expected to persist. Alternatively, the 

design can be designed in such a way that the 

difference in treatment effects may be estimated after 

adjusting for the presence of possible carry-over 

effects.  More precise estimates can be achieved if 

the two approaches can be applied in cross-over 

designs concurrently, like in this study. 

Like the C(2,4,4) cross-over designs, the C (2, 5, 4) 

in this study gives; more precise estimates , allows 

treatment effects to be estimated even in the presence 

of carry-over effects, and can provide estimates for 

intra-subject variability [13].  The C (2, 5, 4) designs 

have an advantage of using the subjects as their own 

control. Additionally, the designs require fewer 

subjects for the same number of observations than 

the non-cross-over designs [7]. In this regard, the 

designs are efficient in situations where the 

experimental subjects are scarce and are expensive to 

recruit and maintain. Moreover, it is possible to 

estimate important treatment contrasts in such 

designs even when the carry-over effects are 

assumed in the overall model. 

 

Conclusion 

This article considered C (2, 5, 4) design for a simple 

one period carry-over effect model. The design 

presented is ideal because the design efficiency is 

optimal.  

In cross-over designs, the presence carry-over effects 

affect the precision of treatments effects estimates in 

an experiment. Apart from increasing the washout 

periods, increasing the number of periods in cross-

over designs can help in eliminating the carry-over 

effects.  

Just like the other higher order cross-over designs, 

the C (2, 5, 4) design in this study gives; more precise 

estimates , allows treatment effects to be estimated 

even in the presence of carry-over effects,  provides 

estimates for intra-subject variability and can draw 

inference on the carry-over effect.  
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