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 The aim of this study is to introduce a parametric mixture model to analysis the competing-risks data 
with two types of failure. In mixture context, ith type of failure is ith component. The baseline failure 
time for the first and second types of failure are modeled as proportional hazard models according to 
Weibull and Gompertz distributions, respectively. The covariates affect on both the probability of 
occurrence and the hazards of the failure types. The probability of occurrence is modeled to depend 
on covariates through the logistic model. The parameters can be estimated by application of the 
expectation-conditional maximization and Newton-Raphson algorithms. The simulation studies are 
performed to compare the proposed model with parametric cause-specific and Fine and Gray 
models. The results show that the proposed parametric mixture method compared with other models 
provides consistently less biased estimates for low, mildly, moderately, and heavily censored 
samples. The analysis of post-kidney transplant malignancy data showed that the conclusions 
obtained from the mixture and other approaches have some different interpretations. 
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Introduction1 

Competing-risks data is a field of survival 
analysis. In competing-risks context, each 
person can experience one of the several 
different types of events over the follow-up 
period. Survival times are defined as the time 
until occurrence of one competing event that 
prevents other event from occurring. With 
competing risks data, the cause-specific hazard 
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measures the instantaneous failure rate due to 
one risk at a time. It is routinely estimated by 
constructing the Cox models on cause-specific 
hazards and treating time to event from the other 
competing risks as censored with constant 
hazards (1, 2). 

Recently, Lunn and McNeil (3) proposed an 
augmented data approach to analyze competing-
risks data using readily available standard 
programs for fitting Cox’s proportional hazards 
regression model with censored observations. A 
comparison of this augmented data approach 
with Kaplan–Meier methods and the cause-
specific hazard approach to estimate the 
cumulative incidence functions (CIFs) in the 
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competing-risks analysis can be found in 
reference (4). 

Fine and Gray (5) proposed a regression 
modeling applied directly on a CIF for 
particular use in competing risks analysis 
which extends the Cox proportional hazards 
model to competing-risks data by considering 
the subdistribution hazard (6). For any event 
type, this approach focuses on the hazard 
associated with the CIF, which expresses the 
effect of covariates directly on the CIF. At time 
t, the CIF defined the probability of having 
outcome by time t while other participants had 
experienced other events. The CIF for cause k, 
not only depends on the hazard of cause k but 
also on the hazards of all other causes. As 
opposed to a cause-specific analysis, which 
would censor the competing event(s), the Fine–
Gray approach does not censor them (7, 8). The 
strength of the association between each 
predictor variable and the outcome was 
assessed using the subhazard ratio which is the 
ratio of hazards associated with the CIF (9), 
and standard errors of the Fine–Gray model are 
robust (Huber-White type) and formal check of 
proportionality by the use of time-varying 
covariate effect (6). 

An alternative analysis of competing-risk 
data postulates a mixture model that expresses 
the failure time distribution in terms of the 
marginal distribution of failure type and the 
conditional distribution of time to failure, given 
the type of failure (10). 

Suppose that there are g distinct types of 
failure and the observed failure-time vector for 
jth individual is: 

 y୨ = ൫t୨; 	x୨; 	d୨൯		(j = 1,… , n)																		  (1) 
 

Where, the tj is the failure time or censoring 
time for the jth individual, x୨ is a vector of 
covariates associated with the jth individual, and  
dj = i indicates that the jth individual fails due to the 
ith type of failure and dj = 0 represents a censored 
observation. In this situation, each individual will 
fail from one of the g failure types. The survival 
function of t is modeled as follows: 

 S(t; 	x) 	= ∑ π୧(x)S୧(t; 	x)																				୧ୀଵ     (2)	

Where, Si(t; x) denotes the conditional 
survival function given failure is due to the ith 
cause, and πi(x) (i = 1,…,g) is the probability 
of failure from the ith cause or mixing 
proportions; the πi(x) sum to one. For model 2 
factors x influence both the incidence of each 
cause and failure time among individuals who 
failed from each cause. Larson and Dinse (11) 
were among the first to use model 2 to handle 
competing-risks problems. Some common 
lifetime distributions according to equation 2 
are used for baseline hazard functions in 
model 2. 

 

hi(t; x) = h0i(t)exp{xT βi}        (i = 1,…g)   (3) 
 

Where, βi and h0i(t, x) are a vector of 
regression coefficients and baseline hazard 
functions. For example, Gelfand et al. (12) 
proposed a continuous baseline hazard in the 
form of the summation of an arbitrary number 
of parametric hazards such as the Weibull. 
Kuk (13) considered a semi-parametric 
generalization of the parametric mixture 
model of reference. Moreover, Ng and 
McLachlan (10) proposed a semiparametric 
mixture model approach to the analysis of 
competing-risks data that attention is focused 
on inference concerning the effects of 
independent variables on both the probability 
of occurrence and the hazard rate conditional 
on each of the failure types. 

In this study, we propose an expectation-
conditional maximization (ECM)-based 
parametric mixture method from two 
distributions Weibull and Gompertz that 
estimations are based on maximum likelihood of 
the full likelihood. This model is, therefore, 
applicable where there are two distinct types of 
failure that act in a mutually exclusive manner, 
and the baseline failure time for each cause 
follows Weibull and Gompertz distributions. 
The proposed method does not require 
independent competing risks assumption. In next 
section, we present the proposed parametric 
mixture model, where parameters can be 
estimated by an extension of the EM algorithm 
that Meng and Rubin (14) termed the ECM 
algorithm. Then simulation and analysis of a real 



The parametric mixture model for competing risk data 

J Biostat Epidemiol. 2016; 2(1): 1-8.  

 

3 

dataset performed to compare this model with 
parametric cause-specific and Fine and  
Gray models. 

Weibull-Gompertz Mixture Model and 
ECM Algorithm 

In mixture context for competing risks, If 
population is split into 2 (g = 2) components 
corresponding to each type of failure with the 
first component as Weibull distribution and 
second component as Gompertz distribution 
that both are defined as proportional hazard 
models, 
 hଵ(t, x) = pt୮ିଵ exp൫βଵx൯								θଵ = ൫p, βଵ൯,  

 hଶ(t, x) = exp(μݐ)exp	(βଶݔ)					θଶ = ൫p, βଶ൯,  
 

then, for observed data y given by equation 1, 
the log-likelihood function for vector of 
unknown parameters θ = (αT, θ1, θ2) , under the 
mixture model 2 is as follows: 

 log L(θ) =∑ ൣ∑ I൫d୨ = i൯ log൛π୧൫x୨; α൯f୧൫t୨; x୨; θ൯ൟ +ଶ୧ୀଵ୬୨ୀଵI൫d୨ = 0൯logS(t୨; x୨; θ)]           (4)  
 

That α = (a, bT) is parameter according to 
mixing proportions that is modeled to depend on 
x through the logistic model (15).  

 π୧(x, α) = 1 − πଶ(x; α) = ୣ୶୮	(ୟାୠ୶)(ଵାୣ୶୮	(ୟାୠ୶)   (5) 
 

If belonging to the ith component for 
censored observation tj is known then an 
complete-data is defined with observable vector 
zj = (z1j , , z2j)

T for each censored observation tj, 
where zij = 1 z୧୨ = 1	if the jth individual would 
have failed from cause i (i = 1,2) and the log-
likelihood function for complete-data is 
modified (15) as follows: 

 log	Lୡ(θ) = ∑ ൣ∑ 	ଶ୧ୀଵ I	൫d୨ 	=୬୨ୀଵi൯log൛π୧(x୨; α)f୧(t୨; 	x୨	; 	θ୧)ൟ + ∑ 	ଶ୧ୀଵ I	(d୨ 	=0)z୧୨	log	π୧(x୨; α)S୧(t୨; 	x୨	; 	θ୧)൧																		      (6) 
	

 

But in practice for censored observation tj, zj 
is unknown and is defined as incomplete data 
(15, 16).  

Thus, parameters can be estimated by 

application of the EM algorithm (16). For this 
algorithm, Q-function on the (k + 1)th iteration 
of the E-step is computed as:  

 Q(θ, θ(୩)) = ∑ ቂ∑ 	ଶ୧ୀଵ I	൫d୨ 	=୬୨ୀଵi൯log൛π୧(x୨; α)f୧(t୨; 	x୨	; 	θ୧)ൟ + ∑ 	ଶ୧ୀଵ I	(d୨ 	=0)τ୧୨(୩)		log	π୧(x୨; α)S୧(t୨; 	x୨	; 	θ୧)ቃ																			  (7)	
 

Where, 
 τ୧୨(୩) = E൫z୧୨หy; θ(୩)൯ = π୧(x୨; α(୩))S୧(t୨; x୨; θ୧(୩))∑ π୧ଶ୍ୀଵ (x୨; α(୩))S୧୍(t୨; x୨; θ୧(୩))  

 (8) 
 

is the posterior probability that the jth 
individual with censored survival time t୨ would 
have failed due to cause i (10). By this method, 
Q-function in equation 7 can be decomposed 
into: 

 

Q (θ, θ(k)) = Q0 + Q1 + Q2 
 

Where,  
 Q = ∑ ቂ∑ 	୧ୀଵ I	൫d୨ 	= i൯logπ୧൫x୨; α൯ +୬୨ୀଵI(d୨ = 0)τ୧୨(୩)	log	π୧(x୨; α)ቃ                             (9) 
 Qଵ = ∑ ቂI	൫d୨ 	= 1൯logfଵ൫t୨; x୨; θଵ൯ +୬୨ୀଵI(d୨ = 0)τଵ୨(୩)	log	Sଵ(t୨; x୨; θଵ)ቃ                     (10) 
 Qଶ = ∑ ቂI	൫d୨ 	= 2൯logfଶ൫t୨; x୨; θଶ൯ +୬୨ୀଵI(d୨ = 0)τଶ୨(୩)	log	Sଶ(t୨; x୨; θଶ)ቃ                     (11) 
 

and in M-step of the EM algorithm α, θ1, θ2 
can be updated separately by maximizing Q0, 
Q1, Q2, respectively. 

On differentiation of Q0 with respect to αi, 
it follows that α(k+1) satisfies the equation, 

 ப୕బப = 0 → ∑ [୬୨ୀଵ I൫d୨ = 1൯ + I൫d୨ =0൯τ୧୨(୩) −	πଵ(x୨; α)]x୨ = 0                            (12) 
 

and differentiation of Q1, Q2 with respect to 
θ1, θ2 and substituting density and survival 
functions of Weibull and Gompertz for 

components 1 and 2, respectively θଵ(୩ାଵ), θଵ(୩ାଵ) 
satisfies the equations: 
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ப୕భபభ =

۔ۖەۖ
ப୕భப୮ۓ = 0 → ∑ I൫d୨ = 1൯ ቄ−tln൫t୨൯ exp(βଵx) + ଵ + ln	(t୨)ቅ−I(d୨ = 0)τଵ୨(୩){tln൫t୨൯ exp(βଵx)}  = 0୬୨ୀଵ

ப୕భபஒభ = 0 → ∑  I൫d୨ = 1൯൛1 = t exp(βଵx)ൟ−I(d୨ = 0)τଵ୨(୩){t exp(βଵx)}൩ ݔ = 0୬୨ୀଵ
	  

   (13) 
 ப୕మபమ =

ەۖۖ
۔ۖ
ப୕మபஜۓۖ = 0 → ∑ ൦ I൫d୨ = 2൯ ൜t୨ − ൛൫ஜ୲ౠିଵ൯ଡ଼൫ஜ୲ౠ൯ ୣ୶୮൫ஒమ୶൯ାୣ୶୮൫ஒమ୶൯ൟஜమ ൠ−I(d୨ = 0)τଶ୨(୩) ൜൛൫ஜ୲ౠିଵ൯ଡ଼൫ஜ୲ౠ൯ ୣ୶୮൫ஒమ୶൯ାୣ୶୮	(ஒమ୶)ൟஜమ ൠ൪ = 0୬୨ୀଵ

ப୕మபஒమ = 0 → ∑ ൦ I൫d୨ = 2൯ ൜1 = ൛(ଡ଼൫ஜ୲ౠ൯ିଵ) ୣ୶୮൫ஒమ୶൯ൟஜ ൠ−I(d୨ = 0)τଶ୨(୩) ൜൛(ଡ଼൫ஜ୲ౠ൯ିଵ) ୣ୶୮൫ஒమ୶൯ൟஜ ൠ൪ = 0୬୨ୀଵ
  

  (14) 
 

The maximization for θ1, θ2 is implemented 
using ECM approach (14) instead of the EM 
algorithm that the M-step is replaced by two CM 
steps. To maximize θ1, the first calculates p(k + 1) 
by maximization of equation 10 with βଵ୍ fixed at βଵ(ౡ). The second CM step calculates βଵ(ౡశభ)  by 
maximization of equation 10 with p fixed at p(k + 1). 
Furthermore, the calculation of θ2 with 
maximization of equation 11 is similar to 
procedure of θ1. The solution to the second CM-
step does not exist in closed form and 
estimations are computed iteratively by Newton-
Raphson algorithm and the standard errors of 
estimates of the parameters can be computed by 
deriving the invert the information matrix. The 
ECM algorithm same to EM algorithm, 
monotonely increases the likelihood after each 
iteration (17, 18). 

In competing risk data, cumulative incidence 
curve is an important curve. With mixture 
approach, the CIF for the first and second 
components according to 1 and 2 type of failures 
can be obtained by equations 15 and 16, (10).  

;ݔ)ଵߨ  1)(ߙ − ଵܵ൫ݐ; ;ݔ ଵ൯ߠ =ୣ୶୮	(ା௫)(ଵ ୣ୶୮ቄିୣ୶୮൫ఉభ௫൯௧ೕቅ)(ଵାୣ୶୮(ା௫))                        (15) 
;ݔ)ଵߨ  1)(ߙ − ܵଶ൫ݐ; ;ݔ ଶ൯ߠ =ୣ୶୮	(ି ୣ୶୮൫ఉమ௫൯൛ୣ୶୮൫ఓ௧ೕ൯ିଵൟ/ఓ)(ଵାୣ୶୮(ା௫))                           (16) 
 

That α, θ1, θ2 are the maximum likelihood 
estimates. 

A simple and informative way of checking 
the proportional hazards assumption in the 
parametric mixture model is provided by 
plotting log(−log(1−Fi(t)/ᴨi)) versus time for 
each level of the variable, where Fi(t) is the 
estimated CIF, is the estimated final CIF (10). 
Approximately parallel lines should result to 
support the proportional hazards assumption for 
the conditional distributions. 

Simulation Experiments 

In this section, we present the results of 
simulation experiments for comparing the 
proposed parametric method with parametric 
cause-specific and Fine and Gray models 
approach. In this simulation, we considered the 
sample size n = 1000 and two distinct events of 
failure (g = 2). The covariate x was a continuous 
variable, which was generated independently 
from the N(0; 1) distribution. We assume the 
component-hazard functions hi(t; x) (i = 1; 2) are 
Weibull and Gompertz distributions with 
proportional hazards, 
 

h1 (t, x) = ptp−1 exp (β01 + β1x) 
h2 (t, x) = exp (µt) exp (β02 + β2x) 
 

The true parameter values were (β01, β1, p, 
β02, β2, µ = 0.5; −0.5; 1.5; 0.5; 0.5; 0.2). For the 
parameters in the logistic model 5, we used  
a = 0.25 and b = 3. Given that an entity belongs 
to the first component, a sample failure time due 
to event 1 was generated according to h1(t) using 
the inverse transform method. Similarly, for an 
entity belonging to the second component, a 
sample failure time due to event 2 was generated 
according to h2(t). For each entity, the censoring 
time was generated from a uniform distribution 
U(c1; c2), where c1 and c2 are some constants. 
If the jth failure time were greater than the jth 
censoring time, it was taken to be censored at 
this censoring time. In the study, we considered 
four different sets of values for c1 and c2 so that 
comparison under different levels of censoring 
could be investigated. For each simulation set, 
we generated 100 independent samples and 
fitted the simulated data using the proposed 
mixture parametric method. Furthermore, we 
fitted cause-specific parametric and Fine and 
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Gray models to the simulated data. Notice that 
some of parameters in these models cannot be 
estimated. The average bias, the mean square error 
(MSE) for parameters are reported in table 1. 

From table 1, it can be seen that the proposed 
parametric mixture method, compared with 
other models, provides consistently less biased 
estimates for low, mildly, moderately, and 
heavily censored samples. The semi-parametric 
Fine and Gray approach generally has greater 
bias and MSE, which is to be expected because 
the true model is a two-component mixture of 
parametric distributions. In mixture model, with 
increasing level of censoring, bias and MSE for 
parameters will increase. It is true except for p 
parameter of Weibull component that has not 
monotonic increase. In the proposed model, the 
most value of bias and MSE, for low, moderately 

and, in particular, for heavily censored samples, 
belongs to b of the logistic part. 

Analysis of Post-transplant Malignancy 
Data 

Behzad Einollahi et al. conducted a large 
multicenter study on 12,525 renal recipients, 
accounting for up to 59% of all kidney 
transplantation in Iran during 22 years follow-up 
period since October 1984 up to December 2008. 
The majority of their patients received a kidney 
from a living unrelated donor (87.5%), followed 
by 9.8% and 2.7% of patients who received from 
living related and deceased donor, respectively. 
They collected 266 (2%) biopsy-proven post-
transplant malignancy cases of 26 different types 
from 16 transplant centers in Iran (19). 

 
Table 1. Average bias, MSE of estimates from the proposed parametric mixture method, parametric cause-specific and 
Fine and Gray models 

Fine and Gray model Specific model Mixture model
Parameter 

Average 
percent 

censored 

Censoring 
distribution 

MSE Average 
bias MSE Average 

bias MSE Average 
bias 

 1.0778 -1.0382 0.00010 0.0084 β01 5.77 Low Uniform (3,8)
1.41658 1.1902 0.90518 0.9514 0.00014 -0.0101 β1

 0.0445 -0.2109 0.00002 -0.0023 p
 1.38104 -1.1752 0.00006 0.0042 β02

1.75695 -1.3255 0.96749 -0.9836 0.00007 0.0051 β2

 0.00264 -0.0513 0 -0.0002 µ
  0.00009 0.0022 a
  0.00051 -0.0118 b
 1.07842 -1.0385 0.00022 0.0135 β01 11.5 Mild Uniform (2,7)

1.34235 1.1586 0.88945 0.9431 0.00036 -0.0179 β1

 0.03797 -0.1948 0.00002 -0.0017 p
 1.40133 -1.1838 0.00009 0.007 β02

1.64558 -1.2828 0.97518 -0.9875 0.00014 0.0096 β2

 0.00216 -0.0463 0.00001 0.001 µ
  0.0001 0.0027 a
  0.00044 0.0075 b
 1.07884 -1.0387 0.00047 0.0208 β01 21.77 

Moderate 
Uniform (1,6)

1.25395 1.1198 0.87069 0.9331 0.00063 -0.0242 β1

 0.03111 -0.1763 0.00004 -0.0047 p
 1.42798 -1.195 0.00012 0.008 β02

1.52498 -1.2349 0.98448 -0.9922 0.0004 0.0184 β2
 0.00162 -0.04 0.00004 0.0057 µ
  0.00009 0.0023 a
  0.00261 0.0471 b
 1.05611 -1.0277 0.00168 0.0405 β01 40.98 

Heavy 
Uniform (1,3)

1.0496 1.0245 0.81219 0.9012 0.00285 -0.0528 β1

 0.00979 -0.0987 0.00004 0.0019 p
 1.46604 -1.2108 0.00068 0.0248 β02

1.27374 -1.1286 1.00885 -1.0044 0.00265 0.0507 β2

 0.00116 -0.0328 0.00023 0.0143 µ
  0.00018 0.0095 a
  0.0247 0.1558 b

MSE: Mean square error 
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To illustration clarify the proposed 
parametric mixture method, we considered to 
assess the incidence of death and chronic graft 
loss after malignancy as a competing risk data in 
this patient. We analyzed a subset of these data 
by considering one risk factor, defined by one 
categorical variable: type of cancer [Kaposi’s 
sarcoma (KS), Non Kaposi’s sarcoma (non-KS), 
post-transplantation lymphoproliferative 
disorder (PTLD), genitourinary and reproductive 
system, solid (GU and RS)] and considered two 
types of failure as competing risks after 
malignancy: (i) chronic graft loss and (ii) death 
with functioning graft. 

Chronic graft loss and death were seen, 
respectively, in 27 (10.2%) and 53 cases 
(19.9%) and 186 cases (69.9%) accounted as 
censored. Incidence rate of chronic graft loss 
was 4.4 per 100 person-years while incidence 
rate of death with functioning graft was 8.6 per 
100 person-years. Thus, incidence rate of death 
was approximately 2 times higher than the 
incidence rate of chronic graft loss. Furthermore, 
distributions of patient survival time and graft 
survival time after malignancy were near to 
Gompertz and Weibull distributions, 
respectively. The proposed mixture parametric 
approach was adopted, and the result is 
presented in table 2. For comparison, we also 
fitted parametric cause-specific and Fine and 
Gray models. The results are presented in tables 
3 and 4, respectively. 

Based on the Fine and Gray approach from 
table 4, we found that type of cancer is a 
significant risk factors associated with the 
cumulative incidence of death. Hazard of non-
KS cancer is similar to KS cancers but PTLD, 
GU and RS and solid cancers increase hazard of 
death versus KS cancers. However, hazard of 

chronic graft lost is similar to all types of cancer. 
In this model, type of cancer is not an important 
factor on the time to develop chronic graft lost. 
According to table 3, The parametric cause-
specific model also indicates that the type of 
cancer has a significant effect associated with 
hazard of death similar to Fine and Gray 
approach. However, hazard of chronic graft lost 
for PTLD, GU, and RS cancer is similar to KS 
cancers. Furthermore, non-KS cancers decrease 
hazard of graft lost versus KS cancers, while 
solid cancers increase mentioned hazard. 
However, a drawback of the cause-specific 
hazard and Fine and Gray approach is that the 
competing causes of failure are not jointly 
estimated; that is, a separate model is fitted for 
each failure cause, treating other failure causes 
as censored. A factor that has strong influence 
on the cause-specific hazard function may have 
no effect on the CIF; Thus, a direct comparison 
of parameter estimates corresponding to the 
various failure types is complicated under the 
cause-specific hazard approach (3-5, 20). 

By the mixture approach, we simultaneously 
estimate the logistic coefficients and the 
regression coefficients. Thus, the risk factors 
affecting the incidence of failures and the time 
to death and chronic graft lost were interpreted.  

With the analysis of the post-transplant 
malignancy data using the proposed ECM-based 
parametric mixture method, it is found out from 
table 2 that the non-KS cancer not only increases 
the probability of chronic graft lost but also 
prolongs the time to this event but does not have 
a significant effect on time to death versus KS 
cancer. The PTLD cancer reduces the 
probability of chronic graft lost and time to 
death but does not have a significant effect on 
time to chronic graft lost versus KS cancer. 

 
Table 2. Maximum likelihood estimates (with standard errors) for ECM-based parametric mixture method 

Coefficient Components Logistic part 
Death outcome Chronic graft lost 

Cancer    
KS Base category Base category Base category 
Non-KS 0.09 (1.04) -2.29* (1.03) 1.98* (0.89) 
PTLD 1.18* (0.41) 0.41 (0.49) -1.14* (0.38) 
GU and RS -0.47 (0.50) 2.77* (0.59) -2.91* (0.56) 
Solid 0.32 (0.45) 3.03* (0.55) -2.81* (0.53) 

*P < 0.05. KS: Kaposi’s sarcoma, Non-KS: Non Kaposi’s sarcoma, PTLD: Post-transplantation lymphoproliferative disorder, GU and RS: 
Genitourinary and reproductive system, ECM: Expectation-conditional maximization 
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The GU and RS and solid cancers reduce the 
probability of chronic graft lost and time to this 
event but have no significant effect on time to 
death versus KS cancer. Furthermore, based on 
parametric mixture method, the most hazards of 
death and chronic graft lost were related to 
PTLD and solid tumors, respectively.  

 
Table 3. Maximum likelihood estimates (with standard 
errors) for parametric cause-specific method 
Coefficient 

Events 
Death outcome Chronic graft lost 

Cancer   
KS Base category Base category 
Non-KS -1.91 (1.06) -2.2* (1.05) 
PTLD 1.56* (0.41) 0.32 (0.49) 
GU and RS 1.51* (0.50) 0.85 (0.6) 
Solid 2.25* (0.45) 1.35* ( 0.56) 

*P < 0.05. KS: Kaposi’s sarcoma, Non-KS: Non Kaposi’s 
sarcoma, PTLD: Post-transplantation lymphoproliferative disorder, 
GU and RS: Genitourinary and reproductive system, ECM: 
Expectation-conditional maximization 

 
Table 4. Maximum likelihood estimates (with standard errors) for 
Fine and Gray method 

Coefficient 
Events 

Death outcome Chronic graft lost 
Cancer   
KS Base category Base category 
Non-KS -1.79 (1.05) -2.04 (1.05) 
PTLD 1.45* (0.41) -0.09 (0.48) 
GU and RS 1.33* (0.47) 0.43 (0.57) 
Solid 1.93* (0.43) 0.65 (0.54) 

*P < 0.05. KS: Kaposi’s sarcoma, Non-KS: Non-Kaposi’s 
sarcoma, PTLD: Post-transplantation lymphoproliferative disorder, 
GU and RS: Genitourinary and reproductive system 

 
From tables 3 and 4, it can be seen that the 

results obtained by Fine and Gray model and 
cause-specific parametric lead to similar 
conclusions on the effect of type of cancer 
hazard on death but its effect on the time to 
death and chronic graft lost are different from 
the result of parametric mixture method.  

Discussion  

We have proposed an ECM-based parametric 
mixture method for the regression analysis of 
competing-risks data. In contrast to Fine and 
Gray and cause-specific parametric model, the 
proposed method does not require independent 
competing risks assumption (10). Estimation is 
undertaken by maximum likelihood via the 
ECM algorithm. The proposed estimation 

procedure via the ECM algorithm is stable and 
the likelihood is monotonic increasing after each 
iteration. The mixture model 2 considers the 
influence of factors on both the probability of 
occurrence and the hazard rate conditional on 
each of the failure types using the logistic model 
and the proportional hazards model. A factor 
that is important for the probability of 
occurrence may not be important for the failure 
risk. In particular, the probability of occurrence 
for the ith cause is estimated based on the 
information on the uncensored observations and 
the posterior probabilities equation 8 of failure 
for the censored observations. The mixture 
model 2 allows us to determine the effect of 
factors on these two quantities simultaneously. 

We also performed some simulation studies. 
It was found that when the true model is a 
mixture of Weibull and Gompertz distributions, 
the bias and MSEs of the estimates obtained by 
the former (Fine and Gray and cause-specific 
parametric) approach were larger. According to 
the mixture model, increasing the level of 
censored, increases bias and MSE. It is 
exceptional for p parameter of Weibull 
component that is not monotonic increasing. 

Similarly, when it was applied to the real 
data, mixture model took a longer time to 
converge. The conclusions obtained from the 
mixture and other approaches have some 
different interpretations. The reason may be that 
mixture method is a parametric model and 
estimate parameters of components jointly. It 
may be also because of this fact that competing 
risks are not independent, which is an essential 
assumption in formal models of competing risk.  
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