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Background & Aim: Congenital hypothyroidism (CH) is one of the most common endocrine 
diseases and is a major cause of preventable mental retardation. Early diagnosis of CH can help 
prevent future diseases. Although time series techniques are often utilized to forecast future status, 
they are inadequate to deal with count data with overdispersion. The aim of this study was to apply 
Poisson hidden Markov model to forecast new monthly cases of CH disease. 

Methods & Materials: This study was based on the monthly frequency of new CH cases in 
Khuzestan province of Iran, from 2008 to 2014. We applied stationary Poisson hidden Markov with 
different states to determine the number of states for the model. According to the model, with the 
specified state, new CH cases were forecast for the next 24 months. 

Results: The Poisson hidden Markov with two states based on Akaike information criterion was 
chosen for the data. The results of forecasting showed that the new CH cases for the next 2 years 
comforted in state two with the frequency of new cases at 6-18. The forecast mode and median for 
all months were 12 and 13, respectively. Each state is explained by each component of dependent 
mixture model.  

Conclusion: Our estimates indicated that state of frequency of CH case is invariant during the 
forecast time. Forecast means for the next 2 years were from 13 to 14 new CH cases. Furthermore, 
forecasting intervals were observed between 7 and 25 new cases. These estimates are valid when the 
general fertility rate and crude birth rate were been fixed. 
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Introduction1 

One of the congenital endocrine disorders is 
congenital hypothyroidism (CH). CH is the 
problem of thyroid hormone deficiency. It causes 
lots of troubles such as mental disease when its 
treatment is not performed on time. In other 
wordsCH is a endocrine illness caused by an 
insufficiency of thyroid hormone in infants (1, 2). 
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CH in newborn infants has been shown by 
screening programs. Early diagnosis and 
treatment are the most important goals of 
neonatal CH screening programs. Nowadays, in 
many developed countries, the screening of CH 
is done by measuring the T4 and thyroid 
stimulating hormone (TSH) routinely. The 
diagnosis of CH is determined by testing TSH 
and free thyroxine (T4) (1, 3). 

Important advances and valuable findings 
have been achieved since the introducing of CH 
screening program in 1970. American Thyroid 
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Association has been the biggest supporting 
organizer of CH screening from 2005 (4, 5). 

The findings of studies conducted around the 
world show that the incidence of CH in live 
births varies from 1:3000 to 1:4000. 
Furthermore, in some cases, the incidence has 
been reported at 1:2000-1:4000 (1, 6). 

Screening for CH was the first implemented 
by Ordookhani et al. (3) in Tehran in 1987. 
According to the results of studies in Iran, on 
average, the prevalence of CH disease in Tehran 
was 1.914 from 1997 to 2001 and in 2002 and 
2009 for Esfahan was 1.370 and 1.748, 
respectively (6). 

In another study, the prevalence of CH in 
newborns in South Khorasan was reported to be 
1 in 549 live births from July 2006 to March 
2010 (2). Moreover, the incidence ratio of CH in 
Zanjan from February 2007 to January 2008 was 
reported to be 1 in 895 live births (1). 

The results of Iran’s studies show the 
prevalence of CH screening in this country is 
higher than other countries that be founded in 
other studies (1). 

Increasing use is being made of time series 
designs in biomedical data, thanks to the 
availability of series of administrative or 
medical data collected routinely including 
mortality or morbidity counts, environmental 
measures, changes in socio-economic or 
demographic indices (7). 

When there is a sequence of unbounded 
count data, applying usual time series models 
such as autoregressive integrated moving 
average which are based on continuous 
outcomes are not suitable for unbounded counts. 
Because of the serial dependency between the 
data, some models that can consider this 
dependency and have the capability of 
forecasting are needed (8). 

One use of Poisson hidden Markov model 
(PHMM) is the modeling of dynamics of counts 
data with unobservable underlying processes. 
Count data for time series have some 
characteristics such as serial dependence and 
overdispersion. There are some approaches for 
modeling these data (9). 

Markov models can be drawn on to tackle 
uncertainty in the absence of historical data. 

This is in the light of the fact that the probability 
of observing future state depends only on the 
probability of observed condition states at the 
present (10). 

HMMs are considered to be powerful tools 
for this purpose (11). In these models, the 
distribution of the response based on the current 
state of the chain can be obtained (12). 

Recently, HMMs are being used in many 
areas of study such as recognition, 
bioinformatics, finance, DNA decoding, and 
economics. These models are attractive because 
of their simplicity. 

When there is a sequence of data, Markov 
chains are stochastic transitions between states 
and the state at the new step is only dependent 
on the previous state (13). HMMs are used as 
the flexible models for both univariate and 
multivariate time series (14). 

Poisson model is a standard way to deal with 
count data because variables with this distribution 
are unbounded. Besides, the particular property of 
this distribution is that the mean and variance are 
equal. But often this property does not hold. In 
practice, in this situation, usually, the variance is 
greater than the mean, which is referred to as 
overdispersion. To handle this problem, one 
suggestion is to use mixture models. Mixture 
models accommodate unobserved heterogeneity 
and have a finite number of components. In this 
situation, there is a mixture of finite distributions 
with a distinct distribution for the variable that has 
been observed (14). One method for overcoming 
with the overdispersion due to heterogeneity is 
using mixture model while the dependency 
between observations has been considered. One 
simple way is relaxing to serial dependency, and 
using markov property (each observation is 
dependent on only one previews observation). 
Poisson–hidden markov model is obtained by 
allowing this assumption (14). 

Although a hidden Markov chain has been 
generalized and extended to different areas, it 
has not been common to apply this model to 
medical studies. 

In this study, we aim to use Poisson hidden 
Markov to forecast count data. Due to the 
importance of knowing the future status of the 
incidence of diseases in medical and health 
areas, this study makes use of Poisson hidden 
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Markov as the forecast method as the nature of 
the data in these areas usually is count, and the 
data collected for this purpose have dependency. 

Methods 

We used the dataset containing the frequency of 
new cases of CH monthly from 2008 to 2014 in 
Khozestan province of Iran. These data belong to 
the infants registered in Shargh laboratory whose 
tests of TSH were positive (venous sampling). 

HMM can be considered a kind of mixture 
model. The Markov model is comprised two 
parts. One part is unobserved parameter of 
process (finite state Markov model Ct) and 
another part is observed sequence of random 
variables depending on the first part (Xt). Xt does 
not depend on previous states of Ct. Xt depends 
only on the current state. We define as follows: 

 

P(Ct|C
(t−1)) = P(Ct|C

t−1)                     t = 2,3,… 
 

Where: 
C(t−1) = (C1, C2 ,…, Ct−1) 
P(Xt|X

(t−1), C(t)) = P (Xt|Ct)               t � N  
C(t) = (C1, C2, …, Ct) 
X(t−1) = (X1, X2, …, Xt−1) 
Pi(x) = P(Xt = x| Ct = i) 
 

Pi indicates probability mass function of Xt at 
time t lie in ith state. 

For Poisson observation model, we have as 
follows:  

 

P��x� = p�X
 = x|C
 = i� =
�����

�

�!
  

 

The likelihood function for this model is 
shown by: 

 
LT = P(X(T) = x(T)) = δP(x1) Γ P(x2) Γ P(xT)1' 
 

In this function, initial distribution is δ and 
P(x) is a diagonal matrix. The elements of P(x) 
are Pi(x1)s. And Γ is transition probability 
matrix. Parameters are obtained by maximum 
likelihood estimation. 

Forecasting distribution can be obtained from 
this equation: 

 

P(Xt + h = x|X(T) = x(T)) = ϕTΓ
h P(x)1' 

 
Where: 

ϕT = αT/αT1' 
 

And:  
αT = αT−1 ΓP(xt) 
 

In the first step, we fitted several stationary 
PHMMs to determine the number of the state (14).  

Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are used to 
compare the models with different state. In this 
case, the number of the states was considered as 
transition matrix states, and the proportion of 
those cases transferred from one state to other 
states and those states that do not change is 
computed as elements of this matrix. 

Forecasting mean, mode and probability of 
staying on the new state were calculated for the 
next 2 years (monthly).  

All analyses were done using R3.2.3 software 
(R Core Team (2014). R: A language and 
environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, 
Austria. URL http://www.R-project.org/). We 
used available codes provided by Zucchini and 
MacDonald.  

Results 

Data contained the frequency of new CH cases for 
72 months. Minimum and maximum numbers 
were 6 and 31, respectively. Median new cases 
were 13. 

The mean and variance of new CH cases were 
14.47 and 31.15 which indicates strong 
overdispersion relative to the Poisson distribution 
and the inappropriateness of that distribution as a 
model. Figure 1 shows trend plot of this data. 

After fitting PHMMs with the different state 
(from one to three states), the comparison of 
these models showed the model with two states 
has less AIC and BIC among others. 
Improvement in AIC was not seen in three states 
model so that we chose the model with two 
states (Table 1). 

Minimum and maximum of new CH cases in 
cluster one and two were 19, 31 and 6, 18, 
respectively, so these two clusters are state space 
for Markov chain. 

We used this matrix and other parameters from 
table 1, as initial values for building PHMM. 
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Figure 1. Frequency of new cases with congenital hypothyroidism in Khuzestan province of Iran from 2008 to 2014 
 

 

Table 1. Comparison of stationary PHMMs with 
different states 

Number of states AIC BIC 

1 466.17 468.40 
2 433.00 442.11 
3 443.00 463.00 

AIC: Akaike information criterion, BIC: Bayesian information 
criterion 

 
Estimation parameters of Poisson hidden 

Markov for transition matrix, probability, and 
lambda (the parameter for Poisson distribution) 
were obtained by maximum likelihood method. 

The probability of jumping from state one to 
two in one step was 0.34 and the reverse was 
0.12. The probability of remaining in state one 
and two were 0.66 and 0.88, respectively. The 
mean of distribution in two states were 21.46 
and 11.95 (Table 2). 

Table 2. Parameter estimation by maximum likelihood 
method for two state Poisson hidden Markov 

Parameter State 1 State 2 
Lambda* 21.46 11.95 
Transition matrix 0.66 0.34 

0.12 0.88 
P 0.26 0.74 

*Lambda: Mean of distribution in each state 
 
Forecasting result for next 24 months (2015 

and 2016) showed that the frequency of new 
cases of this disease lies in state 2 (count of 6 to 
18) with a probability > 0.7, for all months. 

Monthly forecast mean varies from 13.07 to 
14.38. Forecast mode and median for this period 
were 12 and 13, respectively. Forecast interval 
of new cases for the 1st month was interval of 7, 
23, 2nd month 7, 24 and 7, 25 for other months 
(Table 3).   

 
Table 3. Result of forecasting state, mean, median, mode, and interval for two states Poisson hidden Markov 

Month  1 2 3 4 5 6 7 8 9 10 11 12 

State 1 
Probability 

0.12 0.18 0.22 0.23 0.24 0.25 0.25 0.25 0.26 0.25 0.25 0.25 

State 2 0.88 0.82 0.78 0.77 0.76 0.75 0.75 0.75 0.74 0.75 0.75 0.75 

Forecast mean 13.07 13.67 13.99 14.17 14.27 14.32 14.35 14.36 14.37 14.38 14.38 14.38 

Forecast median 12 13 13 13 13 13 13 13 13 13 13 13 

Forecast mode 12 12 12 12 12 12 12 12 12 12 12 12 

Forecast interval (7, 23) (7, 24) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) 

Month  13 14 15 16 17 18 19 20 21 22 23 24 

State 1 
Probability 

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

State 2 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Forecast mean 14.38 14.38 14.38 14.38 14.38 14.38 14.38 14.38 14.38 14.38 14.38 14.38 

Forecast median 13 13 13 13 13 13 13 13 13 13 13 13 

Forecast mode 12 12 12 12 12 12 12 12 12 12 12 12 

Forecast interval (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) (7, 25) 
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Discussion  

The results of this study showed that the new 
CH cases in the forecast period are 
approximately invariant. Lying in state two of 
these chains with a count of 6-18 showed that 
new CH cases were decreasing over time. 
Interval forecasts showed that the frequency of 
the new CH cases can vary from 7 to 25. These 
estimates are reliable if other effective factors 
such as fertility rate and crude birth rate are been 
constant during the two next years. 

In our literature review, we found a limited 
number of studies conducted on the application 
of HMMs for forecasting next states. 

In some epidemiologic surveillance data, 
determining epidemic and non-epidemic status is 
important for health policy makers and the 
information available to them to proceed. In this 
situation, forecasting next status is possible by 
HMMs that offer a set of advantages such as 
flexibility and ability to handle missing data. 

Monitoring epidemiologic surveillance data 
using HMM is an important area in the field. 
The results showed a mixture of two dynamics 
with a low and high level. Low level refers to 
the non-epidemic dynamic (the incidence rate of 
change based on seasonal pattern) and high level 
refers to the epidemic dynamic (the sharp 
increase of the incidence rate in irregular 
intervals). They argued that this method could 
present a clear distinction between epidemic and 
non-epidemic rates. It is for the purposes of an 
illustration that this model can be used since it 
meets a standard epidemiologic objective, that 
is, the identification of the timing of epidemic 
periods (8). 

Junko Murakami used Bayesian approach to 
estimate parameter of PHMMs instead of 
expectation maximization and Markov chain 
Monte Carlo approaches. The results of their 
study showed that the Bayesian approach was 
superior to maximum likelihood estimation for 
the data with small size and small observation 
space (15). 

Using HMM is applicable in many studies. 
Previous studies applied HMMs for other 
purposes than forecasting. In a study conducted 
by Roberta Paroli et al., PHMMs were used in 

non-life insurance. Results suggested that 
PHMMs area more general approach compared 
to Poisson distribution and Poisson process to 
model claim number in non-life insurances (16). 

In another study conducted by Olteanu and 
Ridgway (17), the suggestion was made to apply 
HMMs to time series of counts with excess 
zeros. The real-life data example showed that 
the ZIP-HMM performs better than the HMM 
when there is strong overdispersion in zero. 

Also, Green and Richardson (18) presented a 
new methodology to extend the HMM to the 
spatial domain where it is used to analyze spatial 
heterogeneity of count data on rare outcomes 
using rare phenomena. They also propose 
hierarchical Poisson model, a new model within 
the HMM random field of the framework. 

One limitation of this study was that we 
focused only on the frequency of new cases per 
month without considering other effective 
factors. On the other hand, we had data for 6 
years. This sample size was not large enough for 
forecasting 24 months. Our suggestion for future 
studies is to apply the PHMMs in the presence 
of covariates because several factors play 
important roles in the advent of diseases. 

Conclusion 

Modelling overdispersion in the count data in 
addition to variability is possible using poisson 
hidden markov models where the poisson 
parameter switches to an unobserved Markov 
chain. As the application of PHMMs to forecast, 
the future was not undertaken in other previous 
studies of forecasting health and treatments 
parameters, this study merely put forward an 
alternative method to common forecast methods, 
in the light of their shortcomings.  
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