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 The main assumptions in liner mixed model are normality and independency of random effect 
component. Unfortunately, these two assumptions might be unrealistic in some situations. 
Therefore, in this paper, we will discuss about the analysis of Bayesian analysis of non-normal and 
non-independent mixed model using skew-normal/independent distributions, and finally, this 
methodology is illustrated through an application to a triglyceride data from Isfahan’s Mobarakeh 
Steel Company Cohort Study. 
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Introduction1 

Longitudinal studies are common and reliable 
surveys in the medical field (1) that involve 
repeated observations of the same subjects over 
time. The most common statistical tool for 
analyzing longitudinal and repeated 
measurements data is linear mixed model 
(LMM) (2, 3). The two basic assumptions in 
LMM are normality and independency of 
random effect component which are chosen 
substantially for mathematical convenience. 
However, these two assumptions might be 
unsuitable in some situations. Inference on fixed 
effects without considering non-independency of 
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the random effects causes a lower estimate of 
standard errors and increase Type I error 
consequently (4, 5). Although previous studies 
shown asymptotically robust estimation to non-
normality of the random effects (6, 7), it is so 
important to select appropriate random effects 
distribution for efficient estimation and unbiased 
model-based standard errors (8). 

In order to overcome non-normality, different 
solutions have been proposed by different 
people. The simplest way, especially in the 
presence of severe skewness of distribution is 
the use of data transform specially Box – Cox 
transformation. Although transformation is 
generally used, interpreting of parameter under 
transformation is difficult and some alternative 
ways are more desirable (9-11). Another 
solution for overcoming this problem the is use 
of models which are theoretically able to explain 
the observed changes without the use of normal 
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distribution. In this context, two approaches 
have been proposed. 

The first approach is the use of 
semiparametric LMM. Many researchers have 
studied the use of this method, including the 
works done with Davidian and Gallant (12), 
Magder and Zeger (13), Verbeke and Lesaffre 
(14), Kleinman and Ibrahim (15), Aitkin (16), 
Jiang (17), Tao et al. (18), Zhang and Davidian 
(19), and Ghidey et al. (20). 

The second approach is the use of the 
family of asymmetric distributions that have 
the ability to explain the skewness and 
kurtosis in data. In this context, we can 
referred to work be done with Pinheiro et al. 
(21), Zhou and He (22), Rosa et al. (23), Lin 
and Lee (24, 25), Lange and Sinsheimer (26), 
Ma and Genton (27), Arellano-Valle et al. 
(28), Lachos et al. (29), Jara et al. (11) and 
Bandyopadhyay et al. (30). The literature 
review in this area shows that most models 
that use skew distribution in longitudinal data 
are two levels and fewer study fit skew 
distribution in three and more levels like 
nested longitudinal data. 

Hence, in this paper, we discuss about new 
approach to analysis non-normal and non-
independent LMM. The remainder of this paper 
is organized as follows. 

After short introduction about skew normal 
(SN) and skew-normal/independent (SNI) 
distribution in Section 2, the statistical models 
and likelihood function are presented in Section 
3 and then priors and joint posterior distributions 
and practical implementation are discussed, and 
then in Section 4, the advantage of the proposed 
methodology is illustrated with triglycerides 
(TG) data, and finally, some concluding remarks 
are presented in Section 5. 

SN and SNI Distribution 

SN distribution 
The SN density that introduced with Azzalini 
(31) is distribution that its density function is 
given by: 
 fλ�x� = 2∅�x�Ф�λx�							λ ∈ R&x ∈ R           (1) 
 

Where φ(x) and Φ(x) are probability density 
function (PDF) and cumulative density function 
(CDF) of the normal distribution, respectively. 
In this density, if = 0, SN reduces to the standard 
normal density and if λ→±∞ SN tends to the 
half-normal distribution. The important point of 
SN is, it accommodates skewness but it also 
includes as a special case of normal density, and 
it has the best normal distribution properties. 
The range of possible skewness values of SN is 
(-0.995, 0.995) (32). The important properties of 
SN are: 

Property 1: 
 

if Z1, Z2 ~ N(0,1), then X = 

δ|Z1|+�1 − ����~	SN�λ� 
 λ = �√����	 		� ∈ [−1,+1]    
 

Property 2: 
 

If X~SN(λ), then Y = µ + σX~SN(µ, σ, λ) 
with following density function. 

 f�y, μ, σ, λ� = �#∅ $%�&# 'Ф $λ %�&# ' 	λ&μ ∈R&σ < 0&x ∈ R  
 

SNI distribution 
SNI distributions define like equation 2 
 X = μ + +√,            (2) 

 

In equation 2, µ is location parameter, U is 
positive random distribution with CDF H(u|v) 
and PDF h(u|v), v is a scalar or vector indexing 
the distribution of U. Z is SN distribution with 
location, dispersion, and skewness parameters, µ 
σ

2, λ, respectively. Given U = µ the distribution 

of X is X|U = u~SN$μ, #�0 ' , λ 	with density 

function like equation 3 
 f�x� =21 √0# ×φ$√0�4�&�# 'Ф $√uλ 4�&# ' dH�u| v�   (3) 
 

If U taking distribution 
8��9�9 , X��1�, X��v�v → ∞, and beta(v,1) then the distribution 

of X reduce to Skew T (ST) with v degree of 
freedom, Skew-Cauchy, SN and Skew Slash 
(SS) respectively (33). And also if λ = 0 then the 
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SNI reduce to the normal-independent 
distribution (26). 

Statistical Models and Likelihood Function 

Simple LMM data with non-independent 
random effect can be written like a simple 3 
level modeling (34, 35). Consider 
 

Level 1: yi(jk) = β0(jk) + β1xi(jk)  + εi(jk) 

Level 2: β0(jk) = β0(k) + u(jk) 
Level 3: β0(k) = β0 + vk        (4) 
 

With assumptions 
 v<~N=0, σ>�?, u@�<�~N�0, σ0��, εB�@<�~N�0, σC�� 
             (5) 
 ∀i: 1. . MB<and	j: 1. . M<and	k: 1. . M         (6) 
 Cov�v<, u@�<� = Cov�v<, εB�@<� = Cov�u@�<�, εB�@<�� = 0 
 

Where M is the number of cluster in the total 
dataset, Mk is the number of subjects in cluster 
k, and Mik is the repetition subject i in cluster k. 

In equation 4, random effect v causes non-
independency of random effect u, because u 
nested in v. According to equations 4 and 6 Cov=u�@<�, u�@<�? = OP�. After substituting the level 
3 in level 2 and then level 2 in level 1 and 
rearranging the terms, we got the model like 
equation 7. 

 yB�@<� = βR + β�xB�@<� + v< + u@�<� + εB�@<�     (7) 
i: 1..Mik, j: 1..Mk, k: 1..M 
 

In this paper, we want to use SNI distribution 
instead of normal distribution for uj(k) 

 u@�<�~SNI�0, λu, σu2,wu�          (8) 
 

With use of property 1 and 2, we can write 
yi(jk) with use of equation 9 like equation 10 

 

u@�<� = UV |WX�Y�V1 |
Z[X�Y�V + WX�Y�V2

[X�Y�V  that 

t@�<�0] &t@�<�0� ~N�0, σ0��&w@�<�0 ~f�w0|wR0�          (9) 
 

yB�@<� = βR + β�xB�@<� + ^_�`�a�
b_�`�a + λ0 |^_�`�a] |b_�`�a + v< + εB�@<� 

          (10) 
 

Consider 
 

X =
c
de
1																x���1																	x���.																									..																									.1				xffgffg 	h

ij , Y =
c
de

y���y���..yffgffgh
ij , β =

�βR, β��, U =
c
de

u��u��..uffgh
ij , 	W0 =

c
de

w��0w��0..wffg0 h
ij 	T0] =

c
dde

t��0]t��0]..tffg0] h
iij 	V =

c
de
v�v�..vfh

ij         (11) 

 

Because of nested structure of data and 
independency of random vector in multilevel 
modeling, we can write PDF of f(Y, U, Wu, Tu1, 
V) like equation 12 

 f�Y, U,W0, T0] , V� = f�Y|U,W0, T0] , V� ×f�U|W0, T0] , V� × f�T0]|W0, V� × �W0|V� ×f�V�            (12) 
 

Consider nR = ∑ ∑M<f�<p��  and  nRR = ∑ ∑ M<@f`@p�f<p�  according to assumption 
we have 

 Y|U,W0, T0] , V~Nq..�Xβ + V + U, σr�I�        (13) 
 f�Y|U,W0, T0] , V� =∏ ∏ ∏ Z ��t#u�

f`_vp� exp	�− ��#u� �yB�@<�f`@p�f<p� − yR −β�xB�@<� − v< − u@�<����		         (14) 
 U|	Wu , T0] , V~Nq�λ0�T0]�^�W0��R.z, σ0�W0��I�  

                       (15) 
 f�U|W0, T0] , V� =
∏ ∏ Zb_�`�a

�t#a� exp	�−
b_�`�a {0_�`��|a}~_�`�a] }

Z�_�`�a ��

�#a�
f`@p�f<p� ) 

           (16) 
 T0]|W0, V~Nq�0,σ0�I�                      (17) 
 

 f�T0]|,W0, V� =
∏ ∏ Z ��t#a� ×f`@p� exp	�− ^_�`�a] �

�#a� �f<p�         (18) 

f�W0|V� = ∏ ∏ fba=w@�<�0 ?f`@p�f<p�         (19) 
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V~Nf�0, σ>� I�          (20) 
 f�V� = ∏ Z ��t#�� × exp	�− 9�̀�#���f<p�         (21) 
 

Substitute equations 14, 16, 18, 19, and 21 in 
equation 12 the joint CDF f�Y, U,W0, T0] , V�	 is 
like equation 22. Multiplying this CDF in prior 
distribution, we can achieve posterior 
distribution. With the use of hierarchical 
Bayesian approach, we can estimate parameters 
like, beta, sigma, and lambda. 

  f�Y|U,W0, T0] , V) =∏ ∏ ∏ Z ��t#u�
f`_vp� exp	(− ��#u� (yB(@<)f`@p�f<p� − yR −β�xB(@<) − v< − u@(<))�) ×

∏ ∏ Zb_(`)a�t#a� expc
dde−b_(`)a {0_(`)�|a}~_(`)a] }

Z�_(`)a ��

�#a� h
iij×f`@p�f<p�

Z ��t#a� exp	(− ^_(`)a] �
�#a� ) × f�a(w@(<)0 )) ×

∏ Z ��t#�� × exp	(− 9�̀�#��)f<p�          (22) 

 
Priors and Joint Posterior Distributions 
and Practical Implementation 
Priors and joint posterior distributions 
In this paper normal, inverse gamma, and 
exponential distributions were considered as 
prior distributions, respectively, for beta 
coefficient and skewness parameter, scale 
parameter, and degree of freedom in ST and SS 
distribution. These distributions were popular 
choice in Bayesian LMM (36, 37). With 
considering θ = (βR, β�, σ0�, σ9�, σ��, λ0, v0	 the 
joint priors distribution is like equation 23. 
 βR~N(μ�R, σ�R� )  β�~N(μ��, σ��� )  λ0~N(μ��, σ��� )  σ9�~IG(α9, γ9)  σ0�~��(��, γ9)  σr�~��(���, γr)  v�~���(��)  

π(θ) = π(βR) × π(β�) × π(σ0�) × π(σ9�) ×π(σ��) × π(λ0) × π(λr) × π(v0)       (23) 
 

Combining the likelihood function (equation 
22) and the prior distributions (equation 23), the 
joint posterior distribution for θ is now 

 π(θu, v, t0] , w0|y) =π(θ) ×∏ ∏ ∏ Z ��t#u�
f`_Bp� exp	(− ��#u� (yB(@<)f`@p�f<p� − βR −β�xB(@<) − v< − u@(<))�) ×

∏ ∏ Zb_(`)a�t#a� exp{−b_(`)a �0_(`)��a�^_(`)a] �/Zb_(`)a ���#a� � ×f`@p�f<p�
Z ��t#a� exp	(− ^_(`)a] �

�#a� ) × f�a(w@(<)0 )) ×
∏ Z ��t#�� × exp	(− 9�̀�#��)f<p�           (24) 

 

Distribution (24) is analytically intractable, 
but MCMC methods such as the Gibbs sampler 
and Metropolis–Hastings algorithm can be used 
to draw samples, from which features of the 
marginal posterior distribution of interest can be 
inferred. An outline of the conditional  
posteriors of all model parameters is given in  
Appendix A. 

 
Practical implementation 
In our situation, vague prior distributions 
(equation 25) are utilized; then we used 
WinBUGS software for Bayesian analysis. 
Results are based on every 100 draw from an 
MCMC chain of length 11,000 with a burn-in of 
1000. This proved more than enough for 
convergence, and much shorter runs led to 
virtually identical results. For investigating 
sensitivity analysis, we change the prior of 
parameters and monitor the posterior 
distributions. In this study, we used graphical 
tools like density plot, trace plot, and Gelman-
Rubin convergence diagnostic test for  
model checking. 
 β<	and	λ<�~N(0,100)	∀	k	&	K�   σ9�, σ0� 	and	σr�~IG(0.01,0.01)  v0~exp	(0.1)                     (25) 
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Model selection and goodness-of-fit 
For model selection, we use deviance 
information criterion (DIC) that it is defined in 
as equation 26 (38). 
 DIC = D(θ�) + 2 + P�  D(θ) = −2 × log=f(y|θ)?  P� =	D(θ)������ − D(θ�)  
 

Where D(θ) is the usual deviance measure, D(θ�) is its posterior mean and PD, can be 
interpreted as the number of “effective” 
parameters for model considered. Smaller DIC 
values indicate a better-fitting model (39). 

Medical Example 

Shift work (SW) and TG 
SW is an essential part of today’s business 
reality. SW is often defined as work outside the 
hours of around 7 a.m. and 6 p.m. (40, 41). Few 
studies have investigated the relationship 
between TG and SW. TG is a factor affecting 
overall cardiovascular health (42, 43). Thus, the 
current study aimed to test the association 
between the SW and TG with the use of non-
normal and non-independent LMM. 

The data used in this study were from a 
longitudinal historical study that conducted on all 
employed workers of Isfahan’s Mobarakeh Steel 
Company in Iran between 1997 and 2011. A total 
of 574 workers participated in this study and 4600 
records of data were derived from their medical 
records using the stratified random sampling 
method. The variable of SW was categorized as 
Routine Rotating Shifts (RRS) (2 morning shifts, 2 
evening shifts, 2 night shifts, and 2 days off) and 
Weekly Rotating Shifts (WRS) (3 morning shifts, 
3 evening shifts, and one day off every two weeks, 
Fridays always off). Regular Day Workers (RDY) 
worked from morning to evening on weekdays and 
had Thursdays and Fridays off. In this study, TG 
was considered as the dependent variable, and SW, 
age, and body mass index (BMI) were considered 
as independent variables. 

 

Data analysis and finding 
The statistical model that fit in this paper was 
like equation 27. 
 Level	1: TGB(@<) = βR(@<) + β�AgeB(@<)+ β�BMIB(@<) + β£ShiftrB(@<)+ β¦ShiftwB(@<) + εB(@<) 

 Level2: βR(@<) = βR(<) + u(@<)  
 Level3: βR(<) = βR + v(<)  εB(@<)~¨(0, O��)  u@(<)~SNI(0, λ0, σ0� , w0)  v<¨(0, σ9�)          (27) 
 

In this equation, Shift r and Shift w stand for 
the effect of work in RRS and WRS rather RDY, 
respectively, and BMI stand for BMI variable. 

We apply 5 models in TG data. Model 1 is a 
simple LMM (normal-independent), Model 2: 
Simple LMM with non-independent and normal 
random effect (normal-non independent), Model 
3: Simple LMM with non-independent and SN 
random effect (SN-non independent), Model 4: 
Simple LMM with non-independent and ST 
random effect (ST-non independent) and finally 
Model 5: Simple LMM data with non-
independent and SS random effect (SS-non 
independent). In table 1 and figure 1, summary 
statistics of TG and density plot are shown, 
respectively. Also table 2 represents the 
comparison among the 5 competing models 
using Bayesian model choice criterion. Note that 
all independent and skew models produced 
lower DIC and Dbar rather than the normal 
model. In particular, ST-non independent model 
produces the best fit among the competing  
skew models. 

Table 3 provides posterior estimates of beta 
coefficients, asymmetry parameters, the variance 
components of random errors, and degree of 
freedom of ST and SS distributions. In 
particular, we provide estimates of posterior 
mean, standard deviation (SD), and 95% 
credible intervals (CI). 

Table 1. Summary statistics of TG 
Mean Standard division Median First quantile Third quantile Skewness Kurtosis 
162.15 150.22 138 95.0 162.1 2.38 9.35 

TG: Triglycerides 
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Figure 1. Density plot of triglycerides 
 

As shown in table 3, skewness parameter 

is significant and positive for all three fitted 
models providing evidence of right-skewness for 
our data. And DF parameter in ST and SS model 
is significant and confirms its sufficient disparity 
from the normal framework. The one point on 
table 3 is that estimate of the within-subject 
variances σ0�, is smaller in the skewed class of 
models as compared with the normal model, it is 
because of inter relation between high 
variability, heavy tails as well as skewness (30). 
In table 3, we provide the posterior mean, SD, 
and 95% CIs for the posterior estimates of 
parameters. RRS and WRS are not significant in 
all 5 models and BMI is significant in all 
models, and finally Age is not significant in the 
skew model and significant in the normal model.  

 
Table 2. Model comparison using DIC and Dbar 

Number Model DIC pD Dbar 
1 Normal-independent 53290 491.6 53781.6 
2 Normal-non independent 53250 503.0 53753 
3 Skew normal-non independent 53210 443.2 53653.2 
4 Skew T-non independent 53180 402.1 53582.1 
5 Skew Slash-non independent 53190 394.9 53584.9 

DIC: Deviance information criterion 
 

Table 3. Posterior estimates of fixed effect parameters 
  Normal-

independent 
Normal-non 
independent 

Skew normal-non 
independent 

Skew T-non 
independent 

Skew Slash-non 
independent 

β0 
Mean -20.44 -18.92 -41.94 -35.39 -35.78 
SD 8.41 8.54 8.78 8.17 8.17 

95% CI (-36.37, -3.06) (-35.88, -2.66) (-58.66, -24.67) (-51.27, -20.04) (-50.03, -18.33) 

Age 
Mean 0.54 0.57 0.169 0.31 0.31 
SD 0.243 0.23 0.22 0.20 0.20 

95% CI (0.09, 1.03) (0.13, 1.04) (-0.25, 0.62) (-0.06, 0.72) (-9.11, 0.70) 

BMI 
Mean 6.56 6.57 5.24 5.29 5.26 
SD 0.41 0.40 0.42 0.03 0.39 

95% CI (5.66, 7.35) (5.77, 7.29) (4.36, 6.03) (4.49, 5.29) (4.51, 6.04) 

Shift 
r 

Mean -2.94 -1.57 -2.63 -0.72 -1.49 
SD 3.65 3.92 3.63 3.47 3.64 

95% CI (-10.10, 4.18) (-8.98, 6.25) (-9.63, 4.31) (-7.55, 6.05) (-8.49, 5.65) 

Shift 
w 

Mean -4.72 -4.06 -5.30 -3.72 -4.61 
SD 7.91 6.60 6.36 6.23 6.03 

95% CI (-16.78, 7.91) (-16.24, 9.01) (-18.01, 6.99) (-15.73, 8.56) (-1.60, 8.01) σ�� 
Mean 5670 5613.14 5627.34 5661 5658.43 
SD 126.6 128.81 126.02 126.1 121.87 

95% CI (5429.30, 5924.60) (5361.50, 5861.51) (5377.86, 5881.79) (5417.07, 5911.15) (5423.50, 5910.06) σ0� 
Mean 4433.33 4320.44 132.94 29.91 181.86 
SD 311.10 312.16 58.02 32.67 76.06 

95% CI (3862, 5074) (3738.9, 4945.3) (60.40, 262.45) (7.55, 126.8) (8.87, 374.65) 

λu 
Mean - - 9.04 7.53 2.96 
SD - - 2.05 2.73 0.64 

95% CI - - (5.87, 12.64) (2.42, 11.35) (1.59, 4.11) 

du 
Mean - - - 2.68 0.99 
SD - - - 0.41 0.12 

95% CI - - - (1.98, 3.57) (0.76,1.26) σ9� 
Mean 598.74 587.64 311.04 308.30 204.46 
SD 293.44 288.99 211.87 170.10 174.31 

95% CI (33.76, 1302.45) (40.42, 1239.43) (2.89, 805.46) (67.32, 722.9) (0.02, 628.13) 
SD, 2.5 and 97.5% represents, respectively, the standard deviation and percentiles from the posterior distributions of parameters. SD: Standard 
deviation, BMI: Body mass index, CI: Credible intervals 
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Conclusion 

In this paper, we introduce a new version of 
LMM with non-normal and non-independent 
random effect. Using this method, the ST model 
provided the best fit to these data among other 
competing models. It means the data show some 
degree of skewness and kurtosis that it can 
violate traditional normality assumptions of the 
random effect. ST was shown best fits in another 
study like work done by Lachos et al. (29) and 
Bandyopadhyay et al. (30). Our methodology 
can be further extended to modeling LMM with 
non-normal error term and non-normal 
contextual random effect (v in equation 4) and 
also categorical and survival data analysis, 
which will be pursued in future research.  
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Appendix A: Outline of conditional posterior 
distributions 
Under the full model as described in (24), the full 
conditional distribution of parameter is given as 
 (βR|β�, λ0, σ9�, σ0� , σr�, Y, U,W0, T0] , V)~ 

N{©ª«¬ª«� ­ ]¬u�∑ ∑ ∑ (%®(_`)��]4®(_`)�g`_®¯]g`_¯]g̀̄ ] 9`�0_(`))]¬ª«� ­°««¬u� , �]¬ª«� ­°««¬u��	
            (A1) 
 (β�|βR, λ0, σ9�, σ0� , σr�, Y, U,W0, T0] , V)~ 

N{μβ1σβ12 + 1σε2∑ ∑ ∑ (yi(jk)-β0-Mkji=1 vk-uj(k))xi(jk)Mkj=1Mk=1
1σβ12 + 1σε2∑ ∑ xi(jk)2xi(jk)2Mkji=1Mkj=1 , 11σβ12 + 1σε2∑ ∑ xi(jk)Mkji=1Mkj=1 �  

             (A3) 
 (λ0|βR, β�, σ9�, σ0� , σr�, Y, U,W0, T0] , V)~ 

N{©|a¬|a� ­ ]¬a� ∑ ∑ Zb_(`)a |g`²¯] ^_(`)a] |g̀̄ ]
]¬|a� ­ ]¬a� ∑ ∑ ^_(`)a] �g`²¯]g̀̄ ] , �]¬|a� ­ ]¬a� ∑ ∑ ^_(`)a] �g`_®¯]g`_¯] �  

          (A4) 
 (σr�|βR, β�, λ0, σ9�, σ0� , Y, U,W0, T0] , V)~IGamma	 $I(λr + 1)	nRR + αr + 1,0.5∑ ∑ ∑ =yB(@<) −f`_Bp�f`@p�fµp�βR − β�xB(@<) − v< − u@(<)?� 	+ γr'	                    (A5) 

(σr�|βR, β�, λ0, σ9�, σr�, Y, U,W0, T0] , V)~IG¶(I(λ0 +
1)	nR + α0 + 1,0.5 × ∑ ∑ (t@(<)0] �f`@p�fµp� 	+
w@(<)0 {u@(<) − �a�^_(`)a] �

Zb_(`)a ��) + γr·       (A6) 

 (σ9�|βR, β�, λ0, σ0� , σr�, Y, U,W0, T0] , V)~IG=(I(λ9 +1)	M + α9 + 1,0.5 × ∑ (w<9v<�f<p� ) + γr?     (A7) 
 v0 ∝π0(v) ×Gamma(Z∏ ∏ w@(<)0 , 0.5 ∑ ∑ w@(<)0 + v0f`@p�f<p�f`@p�f<p� )  

 

That π0(v) = 9°«¹�(���г$��')°«  
 

Notation N: normal distribution, IGamma: 
Inverse Gamma Distribution, Gamma: Gamma 
Distribution 
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