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 Conditional methods of adjustment are often used to quantify the effect of the exposure on the 
outcome. As a result, the stratums-specific risk ratio estimates are reported in the presence of 
interaction between exposure and confounder(s) in the literature, even if the target of the 
intervention on the exposure is the total population and the interaction itself is not of interest. The 
reason is that researchers and practitioners are less familiar with marginal methods of adjustment 
such as inverse-probability-weighting (IPW) and standardization and marginal causal effects which 
have causal interpretations for the total population even in the presence of interaction. We illustrate 
the relation between marginal causal effects estimated by IPW and standardization methods and 
conditional causal effects estimated by traditional methods in four simple scenarios based on the 
presence of confounding and/or effect modification. The data analysts should consider the 
intervention level of the exposure for causal effect estimation, especially in the presence of variables 
which are both confounders and effect modifiers. 
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Introduction1 

The term confounding refers to situations when 
an association between the exposure E and 
outcome O is partially or totally observed or 
unobserved as a result of a third variable L (or a 
vector of variables L) usually called 
confounder(s). For a variable to be the 
confounder of an effect, it must be risk factor of 
the outcome in the unexposed population and 
associated with the exposure in the source 
population; the confounder should not also be 
the effect of exposure and outcome (1). 

The concept of interaction or effect 
modification (also known as effect-measure 
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modification or heterogeneity of effect) refers to 
the situation when the magnitude of the measure 
of exposure effect varies across the levels of a 
third variable (or a group of variables) usually 
called effect modifiers. For a variable to be the 
effect modifier of an effect, it should be 
associated with the outcome (2, 3). The terms 
effect modification and interaction are 
sometimes used for different concepts: While 
interaction refers to the joint causal effect of E 
and L on the outcome, effect modification refers 
just to the causal effect of E on O and is agnostic 
as to whether the association between L and O is 
causal (3). As our points apply without this 
elaboration, we will use two terms 
interchangeably. 

Many researchers think that a variable cannot 
be both effect modifier and confounder 
simultaneously. This false concept originates 
from the limitation of the traditional statistical 
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methods, including stratification methods and 
regression models for assessment of interaction 
and confounding simultaneously. In these 
methods, the stratum-specific effect estimates 
are first examined and if the heterogeneity was 
present, stratum-specific estimates are reported. 
However, if stratum-specific estimates were 
reasonably consistent with homogeneity, an 
adjusted summary effect estimate across strata is 
reported by either taking the weighted average 
of stratum-specific estimates (e.g., using 
Mantel–Haenszel or Woolf method) or 
regression analysis; if this adjusted effect 
estimate is markedly different from the crude 
(unadjusted) effect estimate, the adjusted estimate 
is reported; otherwise the crude estimate is 
reported (1). This non-collapsibility definition of 
no confounding relies on the doubtful 
homogeneity assumption, and thus, the traditional 
methods fail if the research question of interest is 
the causal effect of the exposure in the whole 
population in the presence of a variable, which 
are both effect modifier and confounder. 

Suppose E is air pollution, O is myocardial 
infarction, and L is sex. Sex is a known risk factor 
for myocardial infarction, and it is associated with 
air pollution because men usually have more 
outdoor activity than women. Hence, sex can be a 
confounder for the effect of air pollution on 
myocardial infarction. On the other hand, men are 
more susceptible for myocardial infarction and 
hence some measures of effect of air pollution can 
be different between men and women i.e., sex can 
be an effect modifier for the effect of air pollution 
on myocardial infarction. The marginal causal 
effect is of interest in this context even in the 
presence of variables such as sex which are both 
confounders and effect modifiers, because any 
intervention on air pollution would inevitably be 
on the population-level. The traditional statistical 
methods of confounding adjustment cannot 
address this research question, because the implicit 
assumption in reporting adjusted effect estimates 
using traditional methods is no interaction between 
the exposure and confounders. 

Two common marginal methods for 
estimating the marginal causal effect of the 
exposure on the outcome, without assuming 
homogeneity of the measure across strata are 

inverse-probability-weighting (IPW) and 
standardization (3). In IPW, the exposed, and 
unexposed individuals in each stratum of L are 
weighted by inverse-probability of being 
exposed or unexposed in that stratum. This 
results in a pseudo-population in which the 
crude measure of association equals the effect 
measure in the study population and thus, can be 
interpreted as the marginal causal effect of 
exposure on the outcome if there is no residual 
confounding within strata of L. In the 
standardization method with total population as 
the standard, the marginal risks for the exposed 
and unexposed are calculated as the weighted 
average of risks across the strata of the third 
variable with weights equal to the proportion of 
individuals in each stratum of the third variable. 
Again the measure calculated using these 
marginal risks can be interpreted as the marginal 
causal effect of exposure on the outcome if L is 
sufficient for confounding adjustment. 

In this paper, we illustrate the relation 
between marginal causal effects estimated by 
IPW and standardization methods and 
conditional causal effects estimated by 
traditional methods in four simple scenarios: (i) 
L is neither confounder nor effect modifier [on 
the risk ratio (RR) scale], (ii) L is confounder 
but not effect modifier, (iii) L is effect modifier 
but not confounder, (iv) L is both confounder 
and effect modifier. For simplicity, we assume 
that L is a causal risk factor for O, all variables 
are binary, RR is the effect measure of interest, 
the target population for both standardization 
and IPW is the total population (i.e., exposed + 
unexposed), and there is no confounding within 
strata of L. The latter implies that the marginal 
RR (estimated by IPW or standardization) and 
L-specific RRs have causal interpretations in all 
scenarios, but crude RR has a causal 
interpretation only under scenario (i) and (iii) 
where L is not a confounder. Some 
generalizations of our simplifying assumptions 
are mentioned in the discussion. We ignore the 
random error and assume that each subject in 
our examples represents 1 billion subjects that 
are identical to him or her. The issues of random 
confounding and random interaction have been 
described elsewhere (1, 4). 
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L is neither confounder nor effect modifier 
Table 1 shows the overall and L-specific joint 
distribution of E and O in a hypothetical 
population, in which both L and E affect O, but 
E and L are independent and thus L is not a 
confounder for the effect of E on O. Both L-
specific RRs estimates in tables 1 are 2 implying 
no effect modification by L on the RR scale. The 
Mantel–Haenszel and maximum-likelihood L-
adjusted RRs (using either log-binomial or log-
Poisson regression) are 2, which are the same as 
crude RR. The marginal RR by both IPW and 
standardization equals the crude RR (2) 
reinforcing “no confounding”. The details of 
calculations of IPW and standardized RRs are 
described in Appendix 1. 
 
L is confounder but not effect modifier 
Table 2 presents the overall and L-specific joint 
distribution of E and O in a hypothetical 
population, in which both L and E affect O, and 
E and L are associated and thus L is a 
confounder for the effect of E on O. Although 
the crude RR in table 2 is 2.75, both L-specific 

RRs are 2 implying no effect modification by L 
on the RR scale and considerable positive 
confounding based on change-in-estimate 
criterion. As expected, the Mantel–Haenszel and 
maximum-likelihood L-adjusted RRs (using 
either a log-binomial or log-Poisson regression) 
are 2. The marginal RR by both IPW and 
standardization is 2 which does not equal the 
crude RR (2.75) implying “confounding.” 
 
L is effect modifier but not confounder 
Table 3 shows the overall and L-specific joint 
distribution of E and O in a hypothetical 
population in which both L and E affect O, but E 
and L are independent and thus L is not a 
confounder for the effect of E on O. Based on 
table 3, the stratum- specific RRs are 4 and 2, 
implying substantial effect modification by L on 
the RR scale. The crude RR is 3.62 which equals 
the marginal RR by both IPW and 
standardization implying “no confounding,” In 
the absence of confounding, the crude RR value 
of 3.62 is the average of the L-specific RRs and 
is much closer to the value in the stratum L = 1  

 
Table 1. No confounding without effect modification 

Exposure L = 1 L = 0 Crude 
O = 1 O = 0 Total O = 1 O = 0 Total O = 1 O = 0 Total 

E = 1 180 420 600 28 172 200 208 592 800 
E = 0 90 510 600 14 186 200 104 696 800 
Total   1200   400   1600 
 RR = 2 RR = 2 RR = 2 

IPW RR* = 2, Standardized RR* = 2, Mantel–Haenszel RR = 2, Maximum-likelihood L-adjusted RR (using either log-binomial or log-Poisson 
regression) = 2. *The details of calculation are presented in appendix 1. IPW: Inverse-probability-weighting, RR: Risk ratio 
 
Table 2. Confounding without effect modification 

Exposure L = 1 L = 0 Crude 
O = 1 O = 0 Total O = 1 O = 0 Total O = 1 O = 0 Total 

E = 1 324 756 1080 28 172 200 352 928 1280 
E = 0 18 102 120 14 186 200 32 288 320 
Total   1200   400   1600 
 RR = 2 RR = 2 RR = 2.75 

IPW RR = 2, Standardized RR = 2, Mantel-Haenszel RR = 2, Maximum-likelihood L-adjusted RR (using either log-binomial or log-Poisson 
regression) = 2, IPW: Inverse-probability-weighting, RR: Risk ratio 
 
Table 3. No confounding with effect modification 

Exposure L = 1 L = 0 Crude 
O = 1 O = 0 Total O = 1 O = 0 Total O = 1 O = 0 Total 

E = 1 240 360 600 28 172 200 268 532 800 
E = 0 60 540 600 14 186 200 74 726 800 
Total   1200   400   1600 
 RR = 4 RR = 2 RR = 3.62 

IPW RR = 3.62, Standardized RR = 3.62, Mantel-Haenszel RR = 3.62, Maximum-likelihood L-adjusted RR (using log-binomial regression) = 
3.66, Maximum-likelihood L-adjusted RR (using Poisson regression) = 3.62. IPW: Inverse-probability-weighting, RR: Risk ratio 
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(i.e., 4), which contains substantially more of the 
population and it is thus weighted more in the 
averaging (5). The Mantel–Haenszel and 
maximum-likelihood L-adjusted RRs using a 
misspecified log-Poisson regression model (i.e., 
without product term between E and L) are 3.62; 
a misspecified log-binomial regression model 
yields a maximum-likelihood RR of 3.66, 
however. 

 
L is both confounder and effect modifier 
Table 4 presents the overall and L-specific joint 
distribution of E and O in a hypothetical 
population in which both L and E affect O, and 
E and L are associated and thus L is a 
confounder for effect of E on O. On the other 
hand, the stratum-specific RRs are 4 and 2, 
implying substantial effect modification by L on 
the RR scale. Thus, table 4 represents a scenario 
in which L is both confounder and effect 
modifier (on the RR scale). The Mantel–
Haenszel and maximum-likelihood L-adjusted 
RRs using misspecified log-binomial and log-
Poisson regression models (i.e., without product 
term between E and L) are 3.21, 3.58, and 3.47, 
respectively; because of effect modification, 
none of these values have exact causal 
interpretations, however. The marginal RR by 
both IPW and standardization is 3.62 which do 
not equal the crude RR of 2.49 implying 
“confounding”. Because of confounding, the 
crude RR value of 2.49 is much closer to the 
value in the stratum L = 0 (i.e., 2), even though 
it contains substantially less of the population. 
The Stata codes for all analyses in this section 
are provided in Appendix 2. 

Discussion  

We have illustrated the estimation of causal 
effects of a binary exposure on a binary outcome 

in the presence of confounding and/or effect 
modification by a third binary variable, which is 
a risk factor for outcome. If the third variable is 
confounder but not effect modifier, the marginal 
and conditional RRs coincide, but they diverge 
from the crude RR. If the third variable is effect 
modifier but not a confounder, the marginal and 
crude RRs coincide, but they diverge from the 
different stratum-specific RRs. The difficulty 
arises when the third variable is both confounder 
and effect modifier, and subsequently neither 
crude RR nor the adjusted RR using a 
misspecified regression model (which assumes 
no effect modification) has causal 
interpretations. Therefore, the stratum-specific 
RR estimates are often reported in the presence of 
interaction between exposure and confounder(s) in 
the literature, even if the target of the intervention 
on the exposure is the total population and the 
interaction itself is not of interest. The reason is 
that researchers and practitioners are less familiar 
with marginal methods of adjustment such as IPW 
and standardization and marginal causal effects 
which have marginal causal interpretations for the 
total population even in the presence of interaction. 
Our results generalize to other collapsible effect 
measures such as risk difference and survival-
time ratio, but not to non-collapsible measures 
such as odds ratio (OR) and rate ratio (6, 7). 
Under scenario 1, L is associated with O given 
E, because it affects O, and it is also associated 
with E given O, because both E and L affects O 
(i.e., O is a collider on the L→O←E in the 
causal diagram generating the data) (3, 8). Thus, 
assuming no effect modification on OR scale, 
the crude OR will not be equal to L-specific ORs 
i.e., OR is not (simply) collapsible over L, even 
though it equals the marginal causal OR derived 
by standardization or IPW and thus has a causal 
interpretation for the total population. This “OR 
non-collapsibility without confounding” can  
 

Table 4. Confounding with effect modification 
Exposure L = 1 L = 0 Crude 

O = 1 O = 0 Total O = 1 O = 0 Total O = 1 O = 0 Total 

E = 1 48 72 120 28 172 200 76 244 320 
E = 0 108 972 1080 14 186 200 122 1158 1280 
Total   1200   400   1600 
 RR = 4 RR = 2 RR = 2.49 

IPW RR = 3.62, Standardized RR = 3.62, Mantel–Haenszel RR = 3.21, Maximum-likelihood L-adjusted RR (using log-binomial regression) = 
3.58 Maximum-likelihood L-adjusted RR (using Poisson regression) = 3.47. IPW: Inverse-probability-weighting, RR: Risk ratio 

J Biostat Epidemiol. 2015; 1(3-4): 121-128.  



Marginal Vs conditional causal effects 

 

125 

happen in practice in certain designs (e.g., 
matched cohort studies), and regression models 
(e.g., random cluster-effects models) (6, 9). 
Assuming OR homogeneity, a converse property 
of “OR collapsibility without confounding” can 
occur under scenario 2 where L is a confounder, 
but it requires an exact cancellation, which is 
unlikely to occur in practice (10). In this rather 
theoretical case, the crude OR will be equal to 
the causal L-specific ORs even though it does 
not equal the marginal causal OR derived by 
standardization or IPW and thus does not have a 
causal interpretation for the total population. 

The IPW and standardized RRs coincide in 
our simple data examples where there is only 
one binary covariate, and marginal RRs are non-
parametrically estimated. However, there are 
often several nuisance covariates, some of them 
may be continuous or time-varying which 
necessities using regression models to estimate 
IPW and standardized effect estimates. Then, the 
results of standardization and IPW generally 
differ, because they rely on different modeling 
assumptions (IPW models the exposure on the 
confounders and standardization models the 
outcome on exposure and confounders) and 
some models misspecification is inevitable (3). 

The intervention level of the exposure should 
be considered for causal effect estimation, 
especially in the presence of variables which are 
both confounders and effect modifiers. If the 
intervention is individual-level (e.g., drug use), 
the conditional stratum-specific effect estimates 
should be reported. However, if the level of 
intervention is population, the marginal effects 
are of interest and should be estimated and 
reported. The intervention level for many 
exposures including environmental exposures 
(e.g., air pollution) is population. Furthermore, 
the marginal effects with respect to time-
dependent confounders affected by prior 
exposure should be estimated irrespective of the 
exposure level of intervention (11-13). Marginal 
causal methods are also helpful for estimating 
the population intervention parameters which are 
very relevant to public health policy (14). The 
researchers should bear in mind that differences 
between marginal and conditional causal effects 
may occur due to: (i) Misspecifying the 

conditional model due to ignoring the effect 
modification(s) by the conditioning covariate(s) as 
illustrated in the last scenario where L is both 
confounder and effect modifier, (ii) non-
collapsibility of certain effect measures as 
mentioned above in the case of OR for scenario 1 
where L is neither confounder nor effect modifier; 
it is just a risk factor for outcome, and (iii) biases 
caused by conditioning on a time-dependent 
confounder affected by exposure (13, 15). 

In practice, researchers often estimates a 
homogenous causal effect using an outcome 
regression model without assuming interaction 
between the exposure and several covariates, an 
assumption that is unlikely to be met in practice. 
Under common conditions, RR or risk difference 
estimates obtained from linear or log-linear 
probability models can be interpreted as 
approximate estimates of standardized RR, using 
the total source population as the standard  
(16, 17). However, this result does not apply to 
OR obtained from logistic regression models 
(unless risk is low at all exposure-covariates 
combinations), and rate ratio obtained from log-
linear rate regression models (unless the 
exposure has very small effect on follow-up 
person-time) (6, 7, 17).  
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Appendix 

Appendix 1: Calculation of IPW and 
standardized RRs 
For calculating marginal RR with IPW method, 
we created a pseudo-population using inverse-
probability-of-exposure weighting. As an 
example, 180 exposed outcome-positive 
individuals in stratum L = 1 of table 1 were 
weighted with the inverse-probability of being 
exposed in L = 1 (i.e., 600/1200), and 28 exposed 
outcome-positive individuals in stratum L = 0 
were weighted with the inverse probability of 
being exposed in L = 0 (i.e., 200/400), and then 
they were summed to produce the total number of 
exposed outcome-positive individuals in the 
pseudo-population [i.e., 180/(600/1200) + 
28/(200/400) = 416] presented in appendix table 
1. Similar calculations were done to produce the 
other cells of the pseudo-population in appendix 
table 1. The IPW RR is the crude RR in the 
pseudo-population which is 2. 

In the standardization method with total 
population as the standard, the exposure-specific 
risks were weighted-averaged across strata of L 
with weights equal to the proportion of 
individuals in each stratum of L. For example, the 
standardized risk in the exposed in table 1 is the 
weighted average of the risks in the exposed 
individuals in strata L = 1 and L = 0 with weights 
1200/600 and 400/600, respectively i.e., 
[(180/600) × (1200/1600)] + [(28/200) × 
(400/1600)] = 0.26. Similarly, the standardized 
risk in the unexposed is [(90/600) × (1200/1600)] 
+ [(14/200) × (400/1600)] = 0.13. Thus, the 
standardized RR is 0.26/0.13. The expected 
numbers of persons with and without outcome 
using the standardized risks are shown in 
appendix table 1. 

Appendix 2: Stata code for analyses of the data 
in table 4 
i. Constructing the data in table 4 

input 
l e o freq 
1 1 1 48 
1 1 0 72 
1 0 1 108 
1 0 0 972 
0 1 1 28 
0 1 0 172 
0 0 1 14 
0 0 0 186 
End 
 

i. Obtaining Mantel–Haenszel and maximum-
likelihood L-adjusted RRs from log-binomial and 
log-Poisson regression 

cs o e [fweight = freq], by(l) 
glm o i.e i.l [fweight = freq], family(binomial 

1) link(log) eform 
glm o i.e i.l [fweight = freq], family(poisson) 

link(log) eform 
 

ii. Obtaining IPW RR 
expand freq 
quietly: logit e l 
predict pr, p 
gen w = 1/pr 
replace w = 1/(1-pr) if e==0 
glm o e [pweight = w], family(binomial 1) 

link(log) eform 
 

iii.  Obtaining standardized RR 
Method 1 
glm o i.e##i.l, family(binomial 1) link(log) 

eform 
margins e 

 
Table 1. Calculation of IPW and standardized RR for data presented in table 1 

Exposure 
Pseudo-population generated by IPW The expected numbers using the standardized risks 

O = 1 O = 0 O = 1 O = 0 

E = 1 180/(600/1200) + 
28/(200/400) = 416 

420/(600/1200) + 
172/(200/400) = 1184 

{[(180/600) × (1200/1600)] + 
[(28/200) × (400/1600)]} × 800 = 

208 

800−208 = 592 

E = 0 90/(600/1200) + 14/(200/400) 
= 208 

510/(600/1200) + 
186/(200/400) = 1392 

{[(90/600) × (1200/1600)] + 
[(14/200)×(400/1600)]} × 800 = 104 

800−104 = 696 

 IPW RR = 2 Standardized RR = 2 
IPW: Inverse-probability-weighting, RR: Risk ratio 
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matrix b = r(b) 
di b[1,2]/b[1,1] 
Method 2 
gen id = _n 
expand 2, gen(counterfactual) 
label define counterfactual 0 “actual” 1 

“counterfactual” 
replace e = 1- e if counterfactual==1 

quietly: logit o i.e.##i.l if counterfactual==0 
predict p, p 
reshape wide p counterfactual, i(id) j( e) 
sum p1 
scalar r1 = r(mean) 
sum p0 
scalar r0 = r(mean) 
di r1/r0 
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