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Background & Aim: In the survival data with Long-term survivors the event has not occurred for 
all the patients despite long-term follow-up, so the survival time for a certain percent is censored at 
the end of the study. Mixture cure model was introduced by Boag, 1949 for reaching a more 
efficient analysis of this set of data. Because of some disadvantages of this model non-mixture cure 
model was introduced by Chen, 1999, which became well-known promotion time cure model. This 
model was based on the latent variable distribution of N. Non mixture cure models has obtained 
much attention after the introduction of the latent activating Scheme of Cooner, 2007, in recent 
decades, and diverse distributions have been introduced for latent variable. 
Methods & Materials: In this article, generalized Poisson-inverse Gaussian distribution (GPIG) 
will be presented for the latent variable of N, and the novel model which is obtained will be utilized 
in analyzing long-term survival data caused by skin cancer. To estimate the model parameters with 
Bayesian approach, numerical methods of Monte Carlo Markov chain will be applied. The 
comparison drawn between the models is on the basis of deviance information criteria (DIC). The 
model with the least DIC will be selected as the best model. 
Results: The introduced model with GPIG, with deviation criterion of 411.775, had best fitness  
than Poisson and Poisson-inverse Gaussian distribution with deviation criterion of 426.243 and 
414.673, respectively. 
Conclusion: In the analyzing long-term survivors, to overcome high skewness and over dispersion 
using distributions that consist of parameters to estimate these statistics may improve the fitness of 
model. Using distributions which are converted to simpler distributions in special occasions, can be 
applied as a criterion for comparing other models. 
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Introduction1 

In ordinary survival analysis, the main 
assumption is that all the patients are exposed to 
occurrence of event if time of follow up 
increasing, so the limit of the probability of 
event occurrence gets one when the time 
increase infinitely (1). However, in practice, 
thanks to the significant medical progressions 
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and early diagnosis of cancer, a great number of 
people have a kind of survival like general 
population. In this type of data, due to the fact 
that there are people with long-time survival 
(cured), cure models should be applied (2).  

Cure Mixture Model: This model, also 
known as standard cure model, was presented by 
Boag (3), for the first time and developed by 
other authors including Farewell (4), Kuk and 
Chen (5), Sy and Taylor (6), and Peng et al. (7); 
a review paper has also been presented by 
Tsodikov et al. (8) in this area. In this model it is 
assumed that patients in the population are 
divided into two groups. One (θ) those who are 
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not exposed to the occurrence of the event (cure) 
and the probability of their survival is equal to 
one, and those (1 - θ) who are exposed to the 
occurrence of the event and the probability of 
their survival is obtained by one of the common 
functions of survival (S(t)). The survival 
function of all population is achieved using the 
following formula: 
SP(t) = θ + (1 - θ) S(t)          (1) 

Commonly, to estimate the percent of the cured 
people logistic link function is applied for θ. 

Second type of cure model, known as non-
mixture cure model, promotion time cure model, 
or bounded hazard cumulative model was first 
presented by, Yakovlev and Tsodikov (9) and 
then developed by Chen et al. (10). 

Promotion Time cure model: In this model, it 
is assumed that the survival function for the 
subject in the population is SP(t) = exp[-θF(t)] in 
which θ is the percent of cured patients and F(t) 
is the cumulative distribution function. Chen et 
al. (10) used latent variable process in their 
article in which N has Poisson distribution with 
parameter of θ. This represents the average 
number of cancer cells that remained after 
primary treatment which could be formed 
detectable tumor later. While Yii = 1,2,3,…,N, 
has F(t) distribution and is considered to be 
independent from N. Thus, the T random variable 
which is defined as T = {min Yi, 1 ≥ i ≤ N} has 
survival function of SP(t) = exp[-θF(t)], and 
when N = 0, with the probability of exp(-θ), the 
survival time will be T = ∞. 

In recent years, different distributions have 
been considered for the latent variable of N. For 
example, if the latent variable distribution is 
considered to be Bernoulli, mixture cure model 
is achieved. Also it should be noted that many 
other researchers have presented time promotion 
cure model including Cooner et al. (11) using 
Bernoulli, binomial and geometric, Borges et al. 
(12) using generalized power series, Rodrigues 
et al. (13) using COM-Poisson, Cancho et al. 
(14) using negative binomial, Rahimzadeh et al. 
(15) using hypergeometric generalized negative 
binomial, and Baghestani, et al. (16) using 
generalized Poisson lindely distributions. 

It is worth to be mentioned that latent variable 
distribution can be each of discrete distribution 

which has probability density function at zero in 
order to clarify the rate of cure proportion. In 
analyzing long-term survival data, as well as high 
percent of people who are censored at the end of 
the study, there are two problems including over 
dispersion and right skewness resulting in the fact 
that the distributions with higher number of 
parameters which have a higher rate of flexibility 
are taken into consideration. 

The model presented in this article has 
considered generalized Poisson-inverse Gaussian 
for distribution of latent variable. In order to 
estimate the parameters of model with Bayesian 
approach, prior distribution has been taken for the 
parameters of the model, and by applying Markov 
Chain Monte Carlo approaches from the posterior 
distributions, the model parameters are estimated. 
In order to select the best model based on 
deviance information criteria (DIC), the model 
with the least DIC is chosen. 

Promotion time cure model with generalized 
inverse Gaussian distribution 

In Poisson distribution, mean and variance are 
equal, and because of this they are not suitable in 
fitting to discrete data which has over dispersion. 
Therefore, discrete distributions have been 
presented to clarify this over dispersion which is 
mostly a mixture of Poisson distribution with 
continuous distribution. It means that if X has 
Poisson distribution with probability density 

function of f�x|λ� = �	
��
! 	, x = 0,1,…and λ > 0, 

and λ has continuous probability density function 
g(λ), for non-negative values; the marginal 
function of X is acquired using the following 

formula: P�X = x� = � ��������
!

�
� g�λ�dλ    (2) 

However, if λ has gamma distribution the 
marginal distribution of X will have negative 
binomial distribution (17). Whereas, if λ has 
generalized inverse Gaussian distribution, the 
marginal distribution of X will have generalized 
Poisson-inverse Gaussian (GPIG) which called 
Siche distribution (18). Generalized inverse 
Gaussian probability density function can be 
converted to gamma distribution or inverse 
Gaussian distribution under special 
circumstances (19).  

Generalized Poisson-inverse Gaussian 
distribution includes Poisson distribution, 



Promotion time cure model 

J Biostat Epidemiol. 2016; 2(2): 68-75.   

 

70 http://jbe.tums.ac.ir 

Poisson-inverse Gaussian distribution, discrete 
positive stable and degenerate distribution at 
zero, under special conditions. It also has three 
separate parameters for clarifying indicators like 
mean, variance, over dispersion and skewness. 
Therefore, it has more flexibility in comparison 
with Poisson distribution. Commonly, in count 
data in which we are faced with over dispersion 
and skewness, this type of distribution can be a 
good replacement for Poisson distribution. 

This 3-parameter distribution which is also 
known as Sichel distribution was first presented 
by Sichel in 1982, this distribution acts better 
than negative binomial distribution and Poisson-
inverse Gaussian distribution when we are 
dealing with fitting to discrete data with high 
level of dispersion (20). 

Methods 

In an article, presented by Zhu and Joe, 
regarding fitting to count data with long series 
(21), the probability generating function has 
been presented as follow: 
G��x, a, b, c� = exp!b"�1 − c�% − �1 − cx�%&'   
0 < a ≤ 1, b > 0 and ≤ c ≤ 1  (3) 

Mean, variance, over dispersion, and 
skewness of this distribution are given by: 
( = abc �1 − c�)�%⁄ 	, 
σ, = abc�1 − ac� �1 − c�,�%⁄ , 

D = σ, μ/ = c�1 − a� �1 − c�⁄ + 1, 
γ = E�X − E�X��3 σ3 =⁄  
abc�1 − c�%�3"1 + c − 3ac + a,c,& σ3⁄        (4) 

In case c=1, generalized Poisson-inverse 
Gaussian distribution turns into a stable discrete 
function which has an unlimited average and do 
not have variance and skewness. If a = 5

6 it 
reduces to Poisson-inverse Gaussian distribution 
and for c ≠ 1 and a = 1 it reduces to Poisson 
distribution with bc parameter. If 0 < : < 1 and 
0 ≤ c < 1, this distribution will have over 
dispersion, in a way that the rate of over 
dispersion is affected by the parameters a and c. 
The rate of over dispersion increases when c 
increases or a decreases (21). 

Without considering the bounded value of 0 
and 1 for the parameter c, analyzing skewness 
according to the value of parameter b and c 

indicates that, when c < 0.87, the rate of 
skewness decreases when parameter of a 
increases. However, this pattern is completely 
different when c > 0.9. Totally, the amount of 
skewness of this distribution is more than 
inverse Gaussian Poisson distribution (21). 

In the form was introduced by Zhu and Joe 
the distribution of Sichel does not have any 
simple form (21). Although in the promotion 
time cure model, Tsodikov et al. (8), indicated 
that survival function for all the population is 
acquired on the basis of first activation scheme 
of Cooner (11), can be given by:  
SP = P(N=0) + ∑ P�BC) (Z1 > t,…,Zn > t)P(N = n) = 
+ ∑ S�BC� (t)nP(N = n) = GN(S(t))    (5) 

Whereas GN(.) is the probability generating 
function of random latent variable of N, and it is 
obvious that we do not need density function to 
form promotion time cure model. If the 
probability generating function has closed form, 
inference for the model parameters will be 
possible; it does not matter using Bayesian 
method, or maximum likelihood. Therefore, 
survival function and density function for 
population is acquired by the following formula: 
S��t� = exp!b"�1 − c�% − �1 − ct�%&', 0 < a ≤ 1, 
b > 0 and 0 < c ≤ 1 

f��t� = abF1 − cS�t�G%�)exp!b"�1 − c�% −
�1 − cS�t��%&'     (6) 

Regarding the range of each parameter, 
exponential link, logistic link or complementary 
log-log link can be applied in order to specify 
the effect of covariates on the parameters. In this 
way, for the parameters a and c whose amount is 
between 0 and 1 logistic link function or 
complementary log-log link, and for the 
parameter b which accepts the values more than 
0 exponential link can be applied. 

The proportion of cured in this model is 
obtained using, G��0� = exp!−b"1 − �1 − c�%&'. 

Regarding the fact that Weibull distribution 
is one of the most common distribution for 
fitting to survival data, it is considered the 
distribution function S(t). In this case, the 
survival data is as follow: 
S�t|γ� = expF−e�xHG, α > 0 and -∞ < λ < +∞ (7) 

If α > 1, the hazard function is increasing and 
if α < 1, it is decreasing. 
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Parameter Estimation: The likelihood 
function for the cure model is as follows: 
L�β, a, α, λLDMNO� = ∏ f��tQ�RS ×BQC)
S��tQ�)�RS = ∏ h��tQ�RS × S��tQ�BQC)     (8) 

If n is the number of participants in this 
study, and Yi and Ci are survival time and being 
censored respectively for the ith, the observed 
time for this person is Ti = min {Y i,Ci }. 

In this formula, for the indicator function of 
δi when δi=1 we will have Ti=Yi , and if δi=0, 
then Ti=Ci. Therefore, for the ith person, 
Observations Matrix is Dobs = {T i, δi , Xi } is 
achieved, in which Xi is the matrix of covariates. 

In this paper it is assumed that Ni and Zi,I = 1, 
…, n are independent from each other and Zi s 
have generalized Poisson-inverse Gaussian 
distribution. In a way that 0 < a ≤1, b > 0 and  
0 < c ≤1 are the distribution parameters. If Ni = ni 
the required time for the formation of diagnosable 
tumor will be independent from each other and 
will have Weibull distribution mentioned in 7. 
Therefore, the likelihood function is: 
L (α, θ, β, τ, ν|DMNO)=∏ S��t�)�YS × f��t�YSBQC)  =  

Zexp!b"�1 − c�% − �1 − cS�t��%&'[)�YS 		×
\abF1 − cS�t�G%�)exp!b"�1 − c�% −
�1 − cS�t��%&']

YS
   (9) 

These model parameters have been considered 
as non-informative priors distribution in a way 
that the probability of likelihood for estimating 
Bayesian parameters have a more dominant effect 
on posterior distributions. Without affecting the 
issue adversely, it can be assumed that the prior 
distributions are independent. For the regression 
coefficients, uniform non-informative distribution 
with π(β)∝1, for the parameters of Weibull 
distribution λ and α, based on their domain, 
normal distribution and gamma distribution have 
been used respectively and for the parameter a, 
uniform distribution of U(0,1) have been applied. 

Therefore, complete conditional distribution 
for the model parameters of cure model with 
generalized Poisson-inverse Gaussian 
distribution is acquired. 
p(βk|Dobs,β(-k)), ∝ L(β,α,λ,a|Dobs)×π(βk)  
p(α|Dobs,β,λ,a)	∝ L(β,α,λ,a|Dobs) × π(α)  
p(λ|Dobs,β,α,a) ∝ L(β,α,λ,a|Dobs) × π(λ) (10)  

p(a|Dobs,β,α,λ)	∝ L(β,α,λ,a|Dobs) × π(a)  
In the Posterior distributions β(-k) is the rest of 

Bk where the kth component has been omitted, 
and π(Bk), π(τ), π(λ) and π(a) are the prior 
distributions used in model. 

Due to the high level and complexity of the 
posterior distributions, it is not possible to 
calculate the posterior distribution of parameters 
of model using analytical approach. Therefore, 
Markov-chain Monte-Carlo method (MCMC) 
approaches are applied to interference about the 
parameters of model. To do so, by consecutive 
sampling from the complete conditional 
distributions of parameters, using Metropolis 
Hastings algorithm, Markov chain is formed; 
whose approximate distribution is an acceptable 
approximation of posterior parameters of the 
model (22). In this paper, the effect of covariates 
will be considered on the parameter b and c. 

In order to compare the presented model with 
the Poisson and Poisson-inverse Gaussian models, 
the deviance information criterion (DIC) was 
applied which has been presented by Spiegelhalter 
et. al (23). This criterion includes both fitting and 
complexity, and does not have the problems 
related to non-informative prior, and is defined as 
DIC = _�`�aaaaaaa + PD, in which _�`�aaaaaaa is considered to 
be the mean of posterior deviation and indicates 
the amount of fitting, and PD is equal to the 
number of effective parameters which shows the 
complexity of the model, and is equal to the 
difference between the mean of posterior deviation 
and the amount of deviation in mean point of the 
posterior parameters of the model, and is defined 
as PD = _�`�aaaaaaa	 - (̀ ̅). According to this criterion, the 
model which has the least value of DIC is selected 
as the best model. This criterion can be used for 
every sample size and can be easily calculated in 
Monte Carlo Markov chain ways.  

Results 

In this article a set of data related to skin 
cancer was used containing 205 participants who 
have undergone the surgery in order to remove 
the infected mass during 1962–77 and the 
patients were followed up to 1977. These data 
are available in timereg set, in the software R 
(24-25), and have been studied by several 
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authors in order to fit different cured models 
with different distributions (12, 13, 26). 

The survival time ranged from 10 days to 
5565 days, which means from 0.027 to 25.15 
years with the average of 5.9 and deviation of 3.1. 

Patients who died from other causes or 
censored because of living at the end of study 
were considered censored (72%). The graph of 
survival function of Kaplan-Meier of these data is 
shown in figure 1. As it can be seen in this figure 
the survival function before reaching zero has 
become plateau which shows the existence of 
long-term survivors. In this data, There are two 
covariates including the ulceration status in two 
situations (absent = 0, n = 115 and present = 1,  
n = 90) and the thickness of tumor in millimeters 
(mean = 2.96, SD = 2.96). 

In this paper, we have considered a model in 
which the fitting criterion (DIC) has the least 
value. In this regard, the effect of the covariates 
of tumor thickness is considered by using 
exponential link on parameter b, and the effect 
of covariates of ulceration status have been 
considered by logistic link on parameter c. The 
results have been shown in table 1. 

The program used for fitting this model has 
been written in WinBugs software environment 
(27), for estimating the parameters of model 
according to the Bayesian approach with 
generalized Poison-inverse Gaussian distribution 
these prior have been considered. 
λ~N�0,0.1�, α~G�0.1,0.1�, a~U�0,1�	 

 

 

Figure 1. Kaplan-Meier curves stratified by ulceration 
(ULC) status 

 
After sampling, in order to realize the 

convergence, Gelman-Roubin statistic has been 
applied in order to specify burn-ins duration, 
regarding the fact that this statistic is related to all 
parameters less than 1.07, 10000 samples seem 
appropriate for adapting period. In conclusion, the 
next 40000 samples have been considered as the 
samples obtained from posterior distribution of 
parameters. Moreover, to decrease the correlation, 
one sampling is done out of 10 times. The results 
of the fitting of these models (Poisson, Poisson-
inverse Gaussian, and generalized Poisson-inverse 
Gaussian) are presented in the table 1.  

Table 1. Posteriors summaries of the Poisson, Poisson-inverse Gaussian, and generalized Poisson-inverse Gaussian model 
Model Parameter Mean Standard Deviation 2.5 Percentile 97.5 Percentile 
Poisson α -3.027 0.470 -3.962 -2.342 

λ 1.652 0.234 1.181 2.107 
Intercept -1.705 0.487 -2.379 -0.6371 

ULC 1.25 0.312 0.672 1.892 
Poisson-inverse Gaussian α 2.195 0.349 1.571 2.919 

λ -4.622 0.717 -6.318 -3.437 
Intercept -0.785 0.470 -1.525 0.4138 

ULC 1.107 0.306 0.5328 1.712 
Thickness 1.163 0.448 0.4523 2.23 

Generalized Poisson-
inverse Gaussian 

α 2.697 0.535 1.725 3.83 
λ -5.526 1.064 -7.827 -3.617 

Intercept -0.689 0.39 -1.4 0.126 
ULC 0.994 0.313 0.405 1.613 

Thickness 1.406 0.956 0.4052 2.521 
a 0.332 0.116 0.158 0.606 

ULC: Ulceration 
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Time promotion cure model with generalized 
Poisson-inverse Gaussian distribution, with 
deviation criterion of 411.775, results in a better 
fitting rather than, Poisson and Poisson-inverse 
Gaussian distribution with deviation criterion of 
426.243 and 414.673 (Table 2). 

 
Table 2. Cure rate estimation based on the GPIG, 
PIG and P Model 
Model DIC PD D(fg) h�f�aaaaaaa 
Cure model with 
GPIG distribution 

411.775 5.076 406.699 401.623 

Cure model with 
PIG distribution 

414.673 4.426 410.247 405.822 

Cure model with P 
distribution 

426.243 4.856 421.387 416.531 

GIPG: Generalized Poisson-inverse Gaussian; PIG: Poisson-inverse 
Gaussian; P: Poisson 

 
Table 3 shows the estimations of cure rate for 

patients with tumor thickness equal to 0.320, 
1.94, and 8.32 mm which correspond to the 5%, 
50%, and 95% quintiles, respectively. It is seen 
that in the patients with present ulceration 
statues in comparison with the ones with absent 
ulceration statues, the cure rate is lower, 
considering fixed level of tumor thickness; 
moreover, it is obviously seen that the more the 
tumor thickness is the less the cure rate will be. 

 
Table 3. Cure rate estimation in GPIG, PIG and P Model 
Thickness 
 
Model 

0.32  
ULC (absent, 

present) 

1.94 
ULC (absent, 

present) 

8.32 
ULC (absent, 

present) 
GPIG  0.874, 0.694 0.738, 0.441 0.612, 0.265 
PIG 0.849, 0,593 0.665,0.372 0.637, 0.236 
P 0.816, 0.518 0.799, 0.456 0.635, 0.205 
GPIG: Generalized Poisson-inverse Gaussian; PIG: Poisson-inverse 
Gaussian; P: Poisson; ULC: Ulceration 

Discussion  

The application of ordinary survival analysis 
in analyzing the survival data is remarkable. 
However, in these models the primary 
presumption is the occurrence of the event by 
increasing the time of follow-up. However, for 
analyzing the survival data in which a certain 
percent of people are censored at the end of the 
study, the need to newer models like cure model 
is felt. One of the advantages of these models, 
besides estimating the cure rate of patients, is 

they are reduced to prevalent survival models 
when there are no cured patients. It should also 
be noted that the results achieved from these 
models are reliable in case the duration of study 
is long enough. One of the most well-known and 
easiest approaches for recognizing the cured 
patients is by drawing Kaplan-Meier graph. If 
this graph turns into a plateau before reaching 
zero, the existence of cured people is probable. 

Using the distributions, which are converted 
to simpler distributions in special occasions, can 
be applied as a criterion for comparing other 
models. Time promotion cure model with 
generalized Poisson-inverse Gaussian 
distribution turns into time promotion cure 
model with Poisson-inverse Gaussian 
distribution if the : = 5

6
 (28). The results 

obtained from fitting the generalized Poisson-
inverse Gaussian distribution indicates that the 
credible interval for this parameter includes 
value 0.5, therefore there is not a big difference 
in DIC in estimation of these two models. 
Besides, generalized Poisson-inverse Gaussian 
distribution turns into Poisson distribution with 
bc parameter if parameter a=1. Whereas the 
estimations achieved for this parameter indicates 
the inequity of this parameter with 1, and that is 
why Poisson model has a weak fit to data. 

We have not considered any of the covariate 
to parameter a in fitting model, and the effect of 
ULC statues to parameter c with logistic link, 
and the effect of thickness on parameter b have 
been considered with exponential link. In 
different data, the effects of covariates on other 
parameters can be estimated. We have presented 
a model that has a better fitting to the data 
(smaller DIC). 

In order to draw a better comparison between 
the promotion time cured models with 
generalized Poisson inverse Gaussian, Poisson 
inverse Gaussian with Poisson distribution, we 
consider the effects of covariates on the common 
parameters that exist in all three models. In this 
case, in the cure model with generalized Poisson 
inverse Gaussian distribution we will have two 
extra parameters (a, c) ranging from 0 to 1 and 
non-informative prior U (0,1) has been applied 
for both parameters. In the cure model with 
Poisson inverse Gaussian distribution we will 
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have one extra parameter (c) and non-
informative prior U (0,1) has been applied for 
that. In both models, negative amount of PD is 
obtained that indicates in Bayesian models the 
improper prior use of parameters, and thus the 
DIC increases and gets closer to the DIC of 
Poisson distribution. In addition, the estimation 
of the model parameters, except the constant 
does not undergo notable changes, but any 
change in constant causes a total change in 
estimating the cure rate, and this indicates that 
adding extra parameters does not help much in a 
better fitting, but linking covariate to extra 
parameter causes a higher rate of flexibility. 

On discrete data analysis when there is over-
dispersion, negative binomial distribution is the 
most common alternative, and in cure models its 
priority over Poisson models is proved by 
Cancho et al. (14). Thus, this model is applied 
here for data fitting (DIC = 416.269). Although 
this value was lower than that in Poisson 
distribution, it was higher than that in both 
generalized Poisson-inverse Gaussian model and 
Poisson-inverse Gaussian model. In several 
studies, it has been shown that Poisson inverse 
Gaussian distribution has a higher probability on 
extreme values and larger kurtosis compared to 
negative binomial distribution (18). 

In this paper, the model which was applied 
for data fitting was based on the Conner first 
activation scheme. Although random activating 
scheme and last activating scheme can be 
applied, in other papers Conner first activation 
scheme had more accurate fitting which was the 
reason we selected the generalized Poisson-
inverse Gaussian based on Conner first 
activation scheme (29). 

In this paper we used the distribution that the 
probability distribution does not have close form 
but probability generating function had closed 
form. It is worthy because we can use more 
complicated distribution that is obtained by 
compounding different distribution without 
worry about the probability distribution that 
have close form.  
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