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Background & Aim: Multistate models are systems of multivariate survival data where individuals 
move through a series of distinct states following certain paths of possible transitions. Such models 
provide a relevant tool for studying observations of a continuous time process at arbitrary times. The 
aim of this study was to model the transitions from a healthy (hypertension free) state to an illness 
(hypertension) state of a hypertensive patient under treatment. 
Methods & Materials: In this article, the application of multistate modeling using hypertension 
data is demonstrated. Hospital data were obtained for a cohort of 353 patients from Jimma 
University Hospital, Ethiopia.  
Results: Three states of the Markov process are defined based on the WHO guideline of high blood 
pressure, state 1 (BP < 140/90 mmHg), state 2 (BP ≥ 140/90 mmHg) and state 3 (dropout). The first 
state is termed as a healthy state, the second an illness state and the third one is an absorbing state. 
Initially, the state transition intensities and state occupation probabilities are estimated with no 
covariate. Then, the effect of gender and family history of hypertension on the state transition 
intensities are evaluated separately and jointly using proportional intensities model. 
Conclusion: The study indicates that gender has a significant effect on the transition intensities but 
not family history of hypertension. 
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Introduction1 

A multistate Markov model is a stochastic 
process in which subjects occupy one of a set of 
discrete states at any time. This model is 
convenient for describing repeated longitudinal 
events (stages) of the course of chronic diseases. 
In such cases, a patient may advance into or 
recover from adjacent disease stage which is 
called “transient” state or a patient at any disease 
stage may move to a state from which further 
transitions cannot occur called an “absorbing” 
state, often death or dropout. 

This study demonstrates the application of 
multistate transition modeling using hypertension 
data. Hypertension is a chronic medical condition 
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in which the blood pressure in the arteries is 
elevated which requires the heart to work harder 
than normal to circulate blood through the blood 
vessels (1). As it is known, blood pressure is 
summarized by two measurements, systolic and 
diastolic, which depend on whether the heart 
muscle is contracting (systole) or relaxed between 
beats (diastole). 

According to World Health Organization (2), 
high blood pressure is said to be present if it is 
persistently at or above 140/90 mmHg. Assuming 
that a hypertensive patient under anti-hypertensive 
treatment may recover from hypertension, three 
states of the Markov process are identified. These 
are defined as: state 1, blood pressure <140/90 
mmHg; state 2, blood pressure ≥ 140/90 mmHg; 
and state 3, dropout. These states are illustrated by 
a directed graph, where distinct states are treated as 
nodes and possible transitions are considered 
directed edges as shown in figure 1. 
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Figure 1. Paths between the states of the process. BP: Blood pressure 

 
State 1 is categorized as a healthy state and 

state 2 is categorized an illness state. State 3, that is 
the dropout, is considered to be an absorbing state. 
The arrows in figure 1 show which transitions are 
possible between states. Transitions are permitted 
from health to illness, illness to dropout and health 
to dropout. Also recovery from illness to health is 
considered. Therefore, it is important to understand 
how the transitions among these states of 
hypertension take place and how the covariates 
influence these transitions. 

Therefore, the multistate transition modeling 
of the hypertension states is used to predict the 
future clinical state and survival probability of a 
patient. Particularly, it is used to determine the 
conditional probability that a hypertensive 
patient can be in the next state of the disease 
given that the patient is in a known state of the 
disease, after a period of time; the conditional 
probability that a patient is staying in the same 
disease state until a specific time; and the 
probability that a patient survives for a specific 
time given the patient’s starting state of the 
disease. Following parts of this paper are 
organized as section 2 that describes the 
methods used, section 3 that presents the 
discussion of the main results of the study and 
finally, in section 4, conclusions are provided. 

Methods 

Description of the data 
The data used in this paper is obtained from 

Jimma University Hospital, Ethiopia. All 
patients who were 18 years old or older and who 
had an anti-hypertensive treatment follow-up for 
a maximum of 18 months between September 
2011 and January 2013 were included in the 
study. A total of 353 hypertensive patients 

satisfied these inclusion criteria. Of these, 172 
(48.73%) were females and the remaining 181 
(51.27%) were males. In addition, 152 (43.06%) 
patients had and 201 (56.94%) did not have 
hypertension history in their family. Almost all 
of the patients were dropped out from the anti-
hypertensive treatment while only 2 (0.57%) of 
the patients were following the treatment. 

Multistate modeling 
A multistate process, X(t), is a stochastic 

process with a finite state space of possible 
transitions ξ = {1,2,…J} where J is the number of 
states. The quantities of interest (state transition 
intensities and state occupation probabilities) can 
be calculated for complete data and also using 
estimators obtained from censored data when 
complete data is not known. It is useful to keep 
track of all the transitions an individual makes 
before ending in an absorbing state. 

Let Tik represent the time of the kth transition 
for individual i;i = 1, 2, …, n where Ti0 = 0 and 
Tik = ∞ if the ith individual enters the absorbing 
state before the kth transition is made. Let Ci be 
the right censoring time for the ith individual, Li 
be the left truncation time for the ith individual 
and Sik be the state occupied by the ith individual 
between times Ti,k-1 and Tik.  

Let Ti = supk {T ik : Tik < ∞} be the time for the 
last transition for individual i. The collection of 
all transition times and states occupied by 
individual i can be denoted as Ti = (Tik: k ≥ 1) and 
si = (sik: k ≥ 1) , respectively. Let T�∗ = min(Ti,Ci) 
and let δi be an indicator of whether the ith 
individual was never censored, δi = I(Ci > Ti). 

The Nelson-Aalen estimator for the 
integrated hazard matrix Λ and the Aalen-
Johansen estimator of the state occupation 
probability matrix of a Markov system are 

State 1: BP < 140/90 mmHg State 2: BP ≥ 140/90 mmHg 

State 3: Dropout 
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presented in (3). The counting process and the 
number at risk for data subject to left truncation 
and right censoring are estimated as: ��jj(t)=∑ ∑ I�	
��

 (Tik≤t, Ci≥Tik, Li<t, sik=j, si,k+1=j') (1) 

and �� jj(t)=∑ ∑ I�	
��

 (Ti,k-1<t≤Tik, Ci≥t, Li<t, sik=j)      (2) 
The Nelson-Aalen estimator of the 

cumulative hazard is given by: 

Λ�jj'(t)=�� �(�� (�)� ��)�� (�)�
�� dN� (s)�� , j ≠ j′

∑ Λ� (t)�� 																, j = j′�(� 
        (3) 

The Aalen-Johansen estimator of the 
transition probability matrix of a Markov 
multistate system is obtained by product 
integration of Λ�jj', i.e., P�(s,t)=∏ [I�,,-� + dΛ�(u)]        (4) 

Where P�(s,t) and Λ�(t) are J×J matrices. Here Λ�={Λjj} which reduces to simple empirical 
proportions for the complete data. 

For Markov models, there will often be too 
little empirical basis for estimating freely 
varying transition intensities between all states 
for all subgroups, so that more parsimonious 
regression models are required [4]. The most 
frequently used regression models in event 
history analysis have a multiplicative structure 
with a baseline k→j transition intensity λkj0(t), 
assumed common for all individuals (4). For an 
individual, i, with time fixed covariates Zi(=Zim) 
the transition intensity is then modeled as: λ��� (t)=λkj0(t)exp(β�� zi)        (5) 

Where the effect of a covariate Zim is 
described by factors of proportionality exp(βkjm). 
In this equation, the baseline hazard may be 
completely unspecified as in the Cox proportional 
hazards model for survival data or it may be 
assumed to be piecewise constant leading to 
Poisson regression models (5, 6). Also this 
notation suggests that separate baseline hazards 
and regression coefficients are assumed for each 
possible transition. If that is the case, then the 
parameters may be estimated by fitting separate 
Cox or Poisson models for each transition (4). 
However, more parsimonious models may be 
obtained by assuming some baseline transition 
intensities proportional (7, 8) or by assuming 
some covariates to have the same effect on 

several transitions (3). In addition, models where 
the proportional hazards assumption is relaxed 
may be considered. In the Poisson case this is 
simply an interaction between time and the 
covariate giving rise to non-proportionality 
whereas, for the Cox model, the less restrictive 
model is known as the stratified Cox model. 

Results 

Simple bi-direction transition model 
The first step in a multistate model analysis is 

to set up the transition matrix that specifies which 
direct transitions are possible and assigns 
numbers to the transitions for future reference. Of 
the 353 patients, 254 stayed in state 1, 228 
transited from state 1 to state 2 and 149 of them 
transited from state 1 to state 3. Also, 304 patients 
transited from state 2 to state 1, 810 stayed in 
state 2 and 202 transited from state 2 to state 3. 

In multistate models of longitudinal data, 
usually a process is assumed to be Markovian, 
that is, the conditional probability distribution of 
future states depends only on the present state, 
not on the whole sequence of past events (9). 
Hence, all the analyses in this article are done 
under the Markov assumption that future 
evolution only depends on the current state. R 
software version 3.1.3 is used for the analysis 
using the msm package. 

State transition intensities 
The multistate model with three states labeled 

1, 2, and 3 is shown in figure 1 above. At a time t, 
the individual is in state S(t). The next state to 
which the individual moves, and the time of the 
change, are governed by a set of transition 
intensities qkj(t) for each pair of states k and j, k, 
jεξ. The intensity (hazard) represents the 
instantaneous risk of moving from state k to state 
j. This intensity may depend on the time of the 
process t, or more generally a set of individual 
specific explanatory variables z. Therefore, 
qkj(t)=lim△�→� P{S(t +△ t) = j|S(t) = k)}/△ t     (6) 

are then elements of a J×J matrix Q(t) whose 
rows sum to zero, so that the diagonal entries are 
defined by qkj(t)=-∑ >?@(A)?(@  and qkj(t) = 0 if a 
transition from state k to state j is not allowed. 
The intensities between states are supposed to be 
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constant in time (homogeneity assumption) or 
piecewise constant (10, 11, 12). 

For the hypertension data, this transition 
intensity matrix together with the 95% 
confidence interval is estimated as shown in 
table 1. As can be seen from this table, patients 
in an illness state (state 2) are 2.684 
(0.4890/0.1822) times as likely to transit to a 
healthy state (state 1) as dropout (state 3).  

 
Table 1. Estimated baseline transition intensities 
Transition states Baseline 

intensity 
95% Confidence 

interval 
State 1 to state 1 -1.0586 (-1.2960, -0.8647) 
State 1 to state 2  1.0586 ( 0.8647, 1.2960) 
State 2 to state 1  0.4890 ( 0.3933, 0.6080) 
State 2 to state 2 -0.6712 (-0.7894, -0.5707) 
State 2 to state 3  0.1822 ( 0.1638, 0.2028) 

 

State occupation probabilities 
The state occupation probability is the 

marginal probability that an individual being in 
state j at time t. Let pj(t) = P{S(t)=j} denote the 
state j occupation probabilities t, jεξ. The process 
has initial distribution. Where S(t) is the state 
occupied by an individual at time" here. Let  
pj(0)=P{S(0)=j};jεξ. Let	B̂kj(s,t)=P{S(t)=j|S(s)=k} 
be the transition probability to state j by time t 
given that the individual was in state k at time s. 
By fixing s and varying t, the future behavior of 
the multistate model can be predicted given the 
present at time s. For Markov models, these 
probabilities will depend only on the state at time 
s, not on what happened before (9). For 
incomplete data, the state transition probabilities 
are estimated as pE j(t)=∑ pE��

 (0)� pE (0, t)��    (7) 

Where pE (0, t)��  is the (k,j) element of the 

matrix pE	(0,t) in equation (4) and pE (0)� is the 
initial state occupation proportions for state k. 

For the hypertension data, the estimated 
transition probability matrices within a given time 
t = 5, t = 10 and t = 15 months are presented in 
table 2.  

Thus, a typical patient in a healthy state (state 
1) has a probability of 0.8412 of being dropped-
out (state 3) 15 months from now, a probability 
of 0.0613 being still in a healthy state (state 1), 
and a probability of 0.1178 of being with disease 

(state 2), respectively. 
 

Table 2. State occupation probabilities at t = 5, t = 10, 
and t = 15 
Time From To 

State 1 State 2 State 3 
t = 5 State 1 0.2035 0.3900 0.4065 

State 2 0.1802 0.3462 0.4737 
State 3 0.0000 0.0000 1.0000 

t = 10 State 1 0.1117 0.2144 0.6740 
State 2 0.0990 0.1901 0.7109 
State 3 0.0000 0.0000 1.0000 

t = 15 State 1 0.0613 0.1178 0.8209 
State 2 0.0544 0.1044 0.8412 
State 3 0.0000 0.0000 1.0000 

 

Mean Sojourn times and total length of stay 
For processes with successive periods of 

recovery and relapse, it is better also to forecast 
the total time spent healthy or ill, before dropout. 
The total length of stay is an estimate of the 
forecasted total length of time spent in each 
transient state j between two future time points t1 
and t2. This defaults to the expected amount of 
time spent in each state between the start of the 
process (time 0, the present time) and dropout or 
a specified future time. This is obtained as 

Ej=� B?@(A)GAHIHJ  where k is the state at the start of 

the process, which defaults to 1. For the above 
model, each patient is forecasted to spend a total 
of 3.4797 months in a healthy state (state 1) and 
5.4879 months with disease (state 2). 

Another important use of multistate models is 
predicting the probability of survival for patients 
in different states of disease, for some time t in 
the future. This can be obtained directly from the 
transition probability matrix. Figure 2 is a plot of 
the expected probability of survival against time, 
from each transient state. The figure shows that 
the 18 months survival probability with an 
illness (state 2) is lower than the survival 
probability in the healthy status (state 1). 

The effect of gender and family history of 
hypertension  

To look at the effect of gender and family 
history of hypertension on the rates of transition, 
first the transitional model is estimated with each 
covariate. For example, the estimated intensities 
for each category of gender are presented in table 3.  
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Table 3. Estimated transition intensities by gender 

Transition states 

Gender 
Female Male 

Intensity 95% Confidence interval Intensity 95% Confidence interval 
State 1 to state 1 -1.2883 (-1.9081, -0.8699) -0.9802 (-1.2623, -0.7611) 
State 1 to state 2 1.2883 ( 0.8699, 1.9081)  0.9802 ( 0.7611, 1.2623) 
State 2 to state 1 0.8011 ( 0.5295, 1.2120)  0.3286 ( 0.2484, 0.4345) 
State 2 to state 2 -1.0017 (-1.3982, -0.7176) -0.4958 (-0.6017, -0.4085) 
State 2 to state 3 0.2006 ( 0.1719, 0.2341) 0.1672 ( 0.1441, 0.1940) 

 

 
Figure 2. Expected probability of survival 

 
The result indicates that females in a healthy 

state (state 1) are 1.314 (1.2883/0.9802) times as 
likely to transit to an illness state (state 2) as 
those male patients. Also, females in an illness 
state (state 2) are 2.437 (0.8011/0.3286) and 
1.199 (0.2006/0.1672) times as likely to transit 
to a healthy state (state 1) and a dropout state 
(state 3), respectively, as those male patients. 

Again, to examine the effect of family history 
of hypertension, the proportional intensities 
model is fitted with family history alone (Table 
4). Those patients who did not have family 
history of hypertension were 0.804 
(0.9655/1.2010) times as likely to transit from 

state 1 to state 2 as compared to those patients 
who had family history. On the other hand, those 
patients who did not have family history of 
hypertension are 0.899 (0.4688/0.5212) and 1.115 
(0.1914/0.1716) times as likely to transit from 
state 2 to state 1 and state 3, respectively, as those 
who had hypertension history in their family. 

Next, to examine the joint effect of gender 
and family history of hypertension, the 
proportional intensities model was fitted with 
both of the covariates. The estimated intensities 
from this model are presented in table 5. 

Also, the estimated hazard ratios 
corresponding to each covariate effect of the 
proportional intensities model fitted with both of 
the covariates are presented in table 6. 
Regarding each possible transition, the only 
transition on which the effect of gender is 
significant at the 5% level of significance is the 
2-1 transition. Hence, the intensity of moving 
from an illness state (state 2) to a healthy state 
(state 1) is 58% lower for male than female 
patients, given their hypertension family history. 

Discussion  

In this study, initially, a simple bidirectional 
model was fitted with no explanatory variable in 
order to examine the transition intensities, state 
occupation probabilities, mean Sojourn times, 
and total length of stay in a certain state after 
some time.  

 
Table 4. Estimated transition intensities by family history of hypertension 

Transition states 

Family history of hypertension 
No Yes 

Intensity 95% Confidence interval Intensity 95% Confidence interval 
State 1 to state 1 -0.9655 (-1.2480, -0.7470) -1.2010 (-1.6633, -0.8672) 
State 1 to state 2 0.9655 ( 0.7470, 1.2480) 1.2010 ( 0.8672, 1.6633) 
State 2 to state 1 0.4688 ( 0.3539, 0.6210) 0.5212 ( 0.3690, 0.7360) 
State 2 to state 2 -0.6602 (-0.8107, -0.5377) -0.6927 (-0.9021, -0.5320) 
State 2 to state 3 0.1914 ( 0.1661, 0.2207) 0.1716 ( 0.1459, 0.2018) 
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Table 5. Estimated transition intensities by gender and family history of hypertension 

Gender 
Transition 
states 

Family history of hypertension 
No Yes 

Intensity 95% Confidence 
interval 

Intensity 95% Confidence 
interval 

Female State 1 to state 1 -1.1459 (-1.7320, -0.7581) -1.4759 (-2.2307, -0.9764) 
State 1 to state 2  1.1459 ( 0.7581, 1.7320)  1.4759 ( 0.9152, 2.3798) 
State 2 to state 1  0.7358 ( 0.4762, 1.1368)  0.8815 ( 0.5290, 1.4689) 
State 2 to state 2 -0.9450 (-1.3304, -0.6713) -1.0713 (-1.5081, -0.7610) 
State 2 to state 3  0.2093 ( 0.1752, 0.2501)  0.1898 ( 0.1553, 0.2318) 

Male State 1 to state 1 -0.8858 (-1.1944, -0.6569) -1.1408 (-1.6675, -0.7805) 
State 1 to state 2  0.8858 ( 0.6569, 1.1944)  1.1408 ( 0.7805, 1.6675) 
State 2 to state 1  0.3061 ( 0.2184, 0.4290)  0.3667 ( 0.2453, 0.5484) 
State 2 to state 2 -0.4811 (-0.6038, -0.3833) -0.5254 (-0.7009, -0.3939) 
State 2 to state 3  0.1750 ( 0.1464, 0.2092)  0.1587 ( 0.1313, 0.1918) 

 
In multistate modeling, survival is defined as 

not entering the final absorbing state. Hence, it 
is essential to estimate the mean Sojourn time 
and total length of stay in a certain state. The 
mean Sojourn times describe the average period 
in a single stay in a state. For the hypertension 
data, the estimated mean Sojourn times in a 
healthy and illness states are 0.9446 months 
(95% CI 0.7716-1.1565) and 1.4898 months 
(95% CI 1.2668-1.7521), respectively. Thus, 
patients are more likely to stay in an illness state 
than a healthy state.  

To examine the effect of gender and family 
history of hypertension, the proportional intensities 
model was first fitted with each covariate and then 
to determine the joint effect of both covariates, 
both covariates were fitted in the model. Of the 
two explanatory variables, it was revealed that 
only gender has a significant contribution on the 
rates of transition which is in line with another 
study (13) that showed that gender has an effect on 
the prevalence of hypertension. 

In this study, the multistate modeling was 
applied to capture the dynamic stages of a 
hypertensive patient. The transition rates and 

transition probabilities are estimated. Life 
history indicators such as state occupation times 
(Sojourn times) are estimated 0.94 and 1.49 
months in a healthy and illness states, 
respectively. In addition, each patient spent a 
total of 3.48 months in a healthy state and 5.49 
months with illness. The effects of gender and 
family history of hypertension were also 
examined and the result showed that gender has 
a significant contribution in only one of the 
possible transition. In particular, given the 
hypertension history, the hazard of transiting 
from an illness state to a healthy state for male 
patients is 0.42 times that of female patients.  
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