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Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used 
as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from 
genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly 
affect the accuracy of the results. 
Methods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype 
frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance 
of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation 
used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkage-
disequilibrium between the SNPs.
Results: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, 
and deals with missing genotype compared to previous related statistical approaches. Misclassification of 
estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype 
analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% 
to 99%.
Conclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, 
handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification 
bias of the estimate haplotype underestimates the genetic association by more than forty percent. 
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Introduction

Haplotype analysis allows higher resolution 
analysis among genetic association studies 
(GAS) compared to the genotype analysis.1 
In addition, the haplotype may be used as a 
reference panel for genotype imputation among 
genome wide association studies (GWAS).2 

However, the use of haplotypes is not straight 
forward because haplotypes are not directly 
measured in the laboratory and haplotypes are 
estimated based on the genotype of unrelated 
individuals. Misclassification of haplotype 
reconstruction will directly affect the accuracy 
of further analysis results such as linkage-
disequilibrium (LD) across genomic regions, 
inferred population history, fine scale mapping 
correlation between alleles at closely link loci 
and multiple markers in candidate genes.3
The most difficult aspect of reconstructing 
haplotypes in unrelated individuals is 
haplotypic uncertainty which occurs when two 
or more markers are heterozygous and their 
genetic phase is unknown.1 These factors can 
have a large impact causing haplotypes to be 
systematically missed. The parsimony and 
phylogeny methods are rule based approaches 
that seek for an optimal set of haplotypes 
that satisfy specific rules. The parsimony 
rules maximise the genotype resolution 
while reducing the number of haplotypes. 
The phylogeny rules give a set of genotypes 
and find a set of explaining haplotypes that 
defines a perfect phylogeny. The Expectation 
Maximization (EM) algorithm and the Markova 
Chine Monte Carlo (MCMC) algorithm are 
two probability-based approaches that based on 
calculate probability of haplotypes conditional 
on genotypes.4

Several statistical approaches to estimate 

haplotype reconstruction from unrelated 
individual have been proposed including 
expectation-maximization (EM)5 using 
an efficient iterative maximum likelihood 
approach (haplo.em, R package and PLINK 
software),6,7 Bayesian statistical approach 
estimation using a Metropolis-Hastings 
Markov chain Monte Carlo (PHASE)8, hidden 
Markov model (HMM) based on cluster or 
templates (fastPHASE, MACH1, IMPUTE2, 
BEAGLE).9-12

The aim of this study is to propose a novel 
statistics algorithm approach for haplotype 
reconstruction and compare the results with 
those obtained from the most commonly used 
statistical approaches in the literature: R 7, 
PLINK 6, fastPHASE 9, PHASE 8, MACH1 
10, IMPUTE2 11, and BEAGLE 12. In addition, 
we examine the accuracy of the various 
methods for estimating population haplotype 
frequencies and quantify the influence of the 
misclassification bias of estimated haplotypes 
in genetic association analysis.

Methods

The simulated datasets, estimation algorithm 
and statistical analysis have been implemented 
in the R statistical software system version 
4.0.2 13, on a 32-bit computer with 2.00 GB 
of random access memory and an Intel(R) 
Core(TM)2 Duo central processing unit (CPU) 
with 2.00GHz processor.

Simulation of genotype and haplotype 
datasets

The simulation starts to create random diallelic 
(A, major allele; B, minor allele) SNPs for 
100 individuals with varying minor allele 
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frequencies (MAF) ranging from 1%, to 50% 
and pair-wise LD simulating the r2 measure 
with values ranging from low (r2=0.01) to 
high (r2=0.9) correlation between the SNPs. 
To represent studies of unrelated individuals 
assumed that the haplotypic phase was 
unknown and the statistical approaches: R-EM 
7, PLINK 6, fastPHASE 9, PHASE 8, MACH1 10, 
IMPUTE2 11, BEAGLE 12, and Gibbs were used 
to infer the haplotypes. The results obtained 
after the use of the statistical approaches were 
compared to results based on the known phase 
of the haplotypes. Thousand datasets were 
generated and analysed assuming differing 
number of SNPs. Finally, a reality check was 
run on the simulated blood dataset as would 
be done for real data, search for samples with 
observed one of the SNPs is monomorphic 
and identical among all samples. In this case, 
the SNPs is reset and simulate again to have 
heterozygous SNPs as would likely occur when 
processing clinical samples.

Novel haplotype reconstruction methods

The Markov chain Monte Carlo (MCMC) 
non-parametric Gibbs sampler

The Gibbs sampler also known as the Glauber 
dynamics or the heat-bath algorithm, is a leading 
MCMC method for obtaining a sequence of 
observations which are approximated from a 
specified multivariate probability distribution, 
when direct sampling is difficult.14 The Gibbs 
sampling algorithm generates a new sample 
from the distribution of each variable based upon 
the conditional distribution among the current 
values of the other variable.14-16 The Gibbs 
sampler is a popular MCMC algorithm and is 
widely used in phylogenetic analysis, sequence 

motif discovery and haplotype estimation. The 
non-parametric Gibbs sampler does not base 
the sampling of the artificial samples (Dirichlet 
distribution, Poisson distribution, or Gamma 
distribution) on the assumed model of the 
marginal distribution of genotype observations 
but uses instead a non-parametric description of 
the joint distribution, the empirical distribution. 
The statistical method is an optimization 
algorithm, iterative, starting with an initial 
value that belongs to the parameter space. At 
each step of the algorithm (Table 1), a new 
parameter value is selected, hopefully a value 
closer to the final target value than the previous 
one. The algorithm stops when it converges, 
namely when the new value is very close to the 
current value. The value of the parameter that 
was selected when the algorithm converged is 
declared to be the maximiser. 

The algorithm consists of several steps:

The observed data consists of SNP genotypes 
(homozygote major/minor, heterozygote) at 
several genetic loci. n represent the number of 
blood sample (sample size), i is an index used 
to refer to an individual blood sample (i=1,…
,n), j is an index used to refer to a unique 
haplotype combination within a blood sample 
i, h(i,j) is a set of haplotypes, s is the number of 
SNPs genotyped, z is the number of potential 
haplotypes in the population (2s). k is the 
number of iterations. G is a vector of genotype 
group for each patient, G = (g1,…,gn). H is a 
vector of haplotype sets, H = (H1,…,Hz) and θ is 
a vector of estimated haplotype frequencies, θ = 
(θ1,…,θz). The Gi is the number of patients with 
genotype group i, H(i,j) is the count of hapltypes 
in h(i,j), ΣiϵGi is summation of all individuals i 
that are in genotype group Gi.
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The update is always accepted, the ϒ is the 
probability of accepting the update. At the 
end of each iteration the current estimate of 
haplotype frequencies in θ is updated. This 
process of updates until the estimated haplotype 
frequencies converged stationary distribution. 
Iterations defined as being completed when 
every heterozygous individual has been 
selected and tested for an update. Patients 
are selected at random, but every patient can 
only be selected one time in each iteration. 
The algorithm makes at least 500 iteration 
and the trace and autocorrelation output as 
graphs (supplementary Figures S3 to S5). 
The algorithm tested with run 500 iteration 
simulates multiple chains with different starting 
values and reached the same results.

Existing statistical methods of haplotype 
reconstruction

There are seven other well-known published 
methods that are available to use: haplo.
em software,7 Maximum likelihood (ML) 
estimation using Expectation-maximization 
(EM) algorithm (hereon called “R-EM”). 
Expectation-maximization (EM) algorithm 
PLINK v1.07 17 estimation using efficient 

Table 1. The algorithm step
Step The Algorithm

1. Assigning a sequence (k=1) of haplotypes (h(i,j)) from a multinomial distribution (initial guess) that can give rise to 
the observed SNP genotype in each patient (h(0) = [h(1)

(0),…, h(n)
(0)]).

2. Choose an individual (i) at random from among those individuals with ambiguous genotypes and proposed an update 
a new sequence of haplotypes (hi

(k) ~ Pr{h(i)|G).

3. An update is proposed by simulating a new sequence of haplotypes consistent with observed genotype base on the 
conditional distribution: 

4. Repeat step 2 until chain converges.

iterative maximum likelihood approach 
(hereon called “PLINK”). Cluster into groups 
algorithm fastPHASE v1.4 9 according to 
a hidden Markov model (hereon called 
“fastPHASE”). A Bayesian statistical approach 
PHASE v2.1.1 8 estimation using a Metropolis-
Hastings Markov chain Monte Carlo (hereon 
called “PHASE”). Another hidden Markov 
model algorithm MACH v1.0 10 estimation 
using large number of templates (hereon called 
“MACH”). Another hidden Markov model 
algorithm IMPUTE v2.0 11 estimation using 
forward algorithm (hereon called “IMPUTE”). 
And another hidden Markov model algorithm 
BEAGLE v.3.3.2 12 estimation using localized 
haplotype-cluster model (hereon called 
“BEAGLE”).

Evaluation of different statistical methods

Thousand datasets were simulated assuming 
that linkage phase unknown at 2 to 10 SNPs 
there are 4 to 1024 haplotypes, respectively. 
Each dataset is obtained by a process of four 
sequential steps: I. The population frequencies 
of haplotypes are defined by selecting a MAF 
for each locus at random and the number of 
population haplotype frequencies obtained 
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assuming linkage equilibrium between the 
alleles; II. A field survey of unrelated subjects 
with linkage phase unknown blood samples is 
simulated to obtain the genotypes observed; 
III. The estimated haplotype frequencies are 
obtained from each of the statistical approaches; 
IV. The estimated haplotype frequencies from 
dataset are used to evaluate the performance 
of the eight methods. Each of these four steps 
is repeated for each of the 1,000 datasets. The 
datasets and selected haplotype in each dataset 
are kept the same for each of the eight-analysis 
method, this allows a direct comparison 
between the different methodologies used to 
infer haplotype frequencies.
The performance and the accuracy of the 
different methods is measured as follows: ‘P’ 
is a vector whose number of elements equal 
h, the number of potential haplotypes in the 
population. The elements of the vector are 
indicated by the superscript i. The population 
values are compared with the estimated 
value as: I. The correlation coefficient (R2) 
between population, and estimated haplotype 
frequencies; II. Similarity index (IF) 5,18 to 
examine how close the computationally 
estimated haplotype frequencies are to the 
population haplotype frequencies as:

This measure incorporates all h haplotype 
frequencies and thus captures the overall 
difference between estimated and population 
frequencies. It varies between one, when 
population and estimated haplotypes 
frequencies are identical, and zero, when 
estimated haplotypes frequencies tending to 
zero; III. The mean squared error (MSE)19,20 

was calculated as:
 

the estimated and the population haplotype 
frequency of i haplotype, h is the number of 
haplotype frequencies in the population; IV. 
Change coefficient C21,22 assess the scaled 
change in haplotype frequencies and was 
calculated as:

 

The coefficients were computed for each 
possible haplotype across statistical methods 
and presented as difference of estimation (%). 
The value of the coefficient C ranges from 0 
to 1, the value 0 indicating that the haplotype 
frequency estimated, and the haplotype 
frequency population are identical. Positive 
values indicate that haplotype frequency 
estimates tend to be larger than the population 
frequency; V. The IH index18 to examine the 
number of different haplotypes detected in 
the population with the number of different 
haplotypes inferred by the statistical approaches 
and was calculated as:

 

is the number of haplotypes in the population, 
kestimated  is the number of estimated haplotypes 
with frequency above the threshold 1⁄(2n) in a 
population sample of n individuals, and kestimated   
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is the number of population haplotypes not 
identified in the estimated haplotypes. The 
value of IH index ranges between one, when 
the statistical approach identified estimated 
haplotypes are the same as the population 
haplotypes, and zero, when none of the 
population haplotypes are identified by the 
statistical approach. In addition, the speed of 
the analyses which is self-explanatory recorded. 
The haplotype frequency estimation of the real 
data set uses the international collaboration 
Biorepository to Establish the Aetiology of 
Sinovenous Thrombosis (BEAST) study. 23,24

To quantify the potential misclassification bias 
of estimated haplotype frequencies in genetic 
association analysis, probabilistic sensitivity 
analysis25 was used to model the odds of 
phenotype that would have been observed 
among population haplotype frequencies 
without misclassification. Based on sensitivity 

and specificity values from these results, the 
sensitivity of the major allele frequency was 
modelled as 58%–84%, and the specificity 
of the major allele frequency was modelled 
as 71%–89%. The model is running 1,000 
times for each statistical method, combining 
systematic and random errors in the simulation 
to produce probability estimates of the odds 
ratio (OR).

Results

The estimated haplotype frequencies with 
simulated population frequencies across 
eight statistical methods: R-EM, PLINK, 
fastPHASE, PHASE, MACH, IMPUTE, 
BEAGLE, Gibbs and the population haplotype 
frequencies among two to ten SNPs showed 
high concordance. Figure 1A shows the 
absolute deviation of the estimated haplotype 

Figure 1. The correlation (R2) and similarity index (IF) of the estimated haplotype frequencies with simulated population 
haplotype frequencies across statistical methods and number of SNPs.
Gibbs, Gibbs sampler; SNPs, Single Nucleotide Polymorphisms
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frequencies from simulated population 
haplotype frequencies, higher value represents 
higher accuracy. Increasing number of SNPs 
decreases the correlation coefficient by 0.06% 
to 0.12% among all statistical methods. The 
difference between correlation coefficients 
among statistical methods is less than 5.5% 
among population haplotype frequencies. 
The bias is slight and changes with increasing 
number of SNPs. Figure 1B shows the 
similarity index (IF) of the estimated haplotype 
frequencies compared with simulated 
population haplotype frequencies, higher value 
represents higher accuracy. The eight statistical 
methods provided similarity index (IF) values 
very close to each other. The difference 
between similarity indexes among statistical 
methods is less than 7.8% among population 
haplotype frequencies. Increasing number of 
SNPs decreases the similarity index between 
0.20% to 0.28% among all statistical methods. 
This tendency is reflected in the mean squared 
error (MSE) statistics.
Figure 2A shows the average change 
coefficient C of the estimated haplotype 
frequencies compared simulated population 
haplotype frequencies for haplotype frequency 
>5%, lower value represents higher accuracy. 
The difference between change coefficient C 
among statistical methods is less than 11.3% 
among population haplotype frequencies. 
Increasing number of SNPs increases the 
change coefficient C between 13.3% to 24.7% 
among all statistical methods. There was a 
tendency for the estimates to cluster more 
closely to the population haplotype frequencies 
at high frequencies, showing that there is a 
tendency for high-frequency haplotypes to be 
more accurately estimated among all statistical 
methods. Figure 2B shows the IH index of the 

estimated haplotype frequencies compared 
simulated population haplotype frequencies, 
higher value represents higher accuracy. The 
eight statistical methods provided IH index 
values very close to each other. The difference 
between IH indexes among statistical methods 
is less than 6.6% among population haplotype 
frequencies. Increasing number of SNPs 
decreases the IH index between 0.29% to 
0.35% among all statistical methods.
The estimated haplotype frequencies for real 
data among eight statistical methods are shown 
in Figure 3A. This was anonymized data from 
the international collaboration Biorepository 
to Establish the Aetiology of Sinovenous 
Thrombosis (BEAST) study. The aim of the 
study is to perform a genome-wide association 
analysis to assess the association and impact of 
common and low-frequency genetic variants 
on cerebral venous thrombosis (CVT) risk. The 
data set comes from nine countries, contains 
four biallelic SNPs from chromosome 4 is used 
for 1153 individuals, and is used to check the 
application of eight statistical methods (Gibbs, 
R-EM, PLINK, fastPHASE, PHASE, MACH, 
IMPUTE and BEAGLE). The results obtained 
from different methods were very similar with 
the mean difference of estimated haplotype 
frequencies between the statistical methods, is 
about 1%. The lowest difference of estimated 
probability is 0.5% present between R-EM and 
BEAGLE methods and the highest difference 
of estimated probability is 1.4% present 
between IMPUTE and BEAGLE methods.
Probabilistic analysis correcting exposure 
misclassification leading to non-differential 
misclassification of the exposure (Figure 3B). 
The analysis hypothesis that the haplotype 
carrier differs from the highest-frequency 
haplotype, or the wild-type haplotype is 
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associate with an increasing risk of the 
phenotype by observed OR of 1.50 (95% 
CI: 1.01-2.25, P<0.05). The OR observed 
is underestimate the association between 
the estimated haplotype and the phenotype 
between 36% to 99%. In addition, suggesting 
misclassification may have driven some of the 
null findings.
Supplementary Material Figures S6, to S8 
shows the performance of the statistical 
methods when sample size is 1000 individuals. 
Similar patterns were observed when sample 
size was defined at 1000 individuals. Table 
S1 shows the computational time for the 
statistical methods, lower value represents 
faster calculation. There is a large difference 
between the statistical methods of almost 209 
seconds. Increasing number of SNPs increased 
the time of the analysis between 95% to 

10,178% among all statistical methods.

Discussion

This study proposed the Gibbs sampler 
statistical method for haplotype reconstruction 
of human blood samples. This method presents 
a greater accuracy, robust validity performance, 
the ability to deal with missing genotypes and 
return the probability of possible haplotype 
combinations in each individual and the 
uncertain probability of haplotype frequencies. 
However, all statistical methods give similar 
results.
There are differences between the statistical 
methods, especially as the number of SNPs 
increases. The number of haplotypes increases 
exponentially with the number of SNPs.1 
When the number of SNPs is small (four or 

Figure 2. The average change coefficient (C) and haplotype identification (IH) of the estimated haplotype frequencies 
with simulated population haplotype frequencies across statistical methods and number of SNPs.
Change coefficient (C) for haplotype frequency >5%; Gibbs, Gibbs sampler; SNPs, Single Nucleotide Polymorphisms.
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less), the EM methods (R-EM and PLINK) 
is accurate and valid, but the increase in the 
number of SNPs will reduce the accuracy and 
validity of the results. The Markov model 
methods (Gibbs sampler, fast PHASE, PHASE, 
MACH1, IMPUTE2 and BEAGLE) presents 
the same pattern, but when the number of 
SNPs increases the accuracy and validity of the 
results are higher than that of the EM method. 
All statistical methods have dimensionality 
problems, and the results obtained are very 
sensitive to the increase in the number of SNPs, 
their accuracy and validity decrease with the 
increase in the number of SNPs. Although, in 
the case of seven SNPs or less, the new method 
still provides better results than the existing 
methods. The computational complexity 
increases exponentially with the number 
of SNPs, and when investigating genetic 
association studies, it is rarely necessary to 
analyse more than seven SNPs at the same 
time in practice. While all statistical methods 
have similar accuracy, R-EM7 is the fastest 
method for estimating haplotype frequencies. 
The PLINK v1.076 is the only version with 
the phasing and haplotype testing algorithms. 
Future versions of PLINK recommend using 
BEAGLE12 to estimate haplotype frequencies 
and haplotype associations. The PHASE 
v1.026,27 uses Gibbs sampling method to 
estimate haplotype frequencies base on 
mutation rate. The second version 8 uses the 
Metropolis-Hastings (MH) method and is 
considered more accurate. 
The asymptotic statistical performance of 
all methods is similar in same situations, the 
differences in the statistical performance 
among methods are due to the different priors 
they use for modelling population haplotype 
frequencies. It is not possible to calculate the 

population haplotype frequencies directly. The 
non-parametric Gibbs sampler does not base 
the sampling of the artificial samples (Dirichlet, 
Poisson, or Gamma distribution) on the 
assumed model of the marginal distribution of 
genotype observations but uses instead a non-
parametric description of the joint distribution, 
the empirical distribution. The differences in 
performance among the methods are relatively 
minor. The accuracy increases due to the 
prior used in the inference methods is more 
like the population haplotype frequencies. 
The Gibbs sampler method draws iteratively 
from conditional distributions particularly 
useful and lower in dimension rather than 
drawing directly from the joint distribution 
with which it may not always be easy to work. 
While the Gibbs sampler relies on conditional 
distributions, the Markov model methods 
bases on Metropolis-Hastings sampler uses 
a full joint density distribution to generate a 
candidate draws. The candidate draws are not 
automatically added to the chain but rather an 
acceptance probability distribution is used to 
accept or reject candidate draws. These methods 
are sensitive to the step size between draws. 
Either too large or too small of a step size can 
have a negative impact on convergence. The 
Gibbs algorithm sampling likely haplotypes 
for all subjects does not need to consider every 
possible haplotype unlike the EM-algorithm 
which must sum over every possible haplotype 
during the E-step. This property of the Gibbs 
sampler makes it better suited to deal with 
situations where there are many possible 
haplotypes, and many markers. While the EM-
algorithm will converge to a maximum, it may 
be only a local maximum. However, the Gibbs 
sampler may get trapped in a local mode but it 
does have a chance of escaping such a mode 
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and finding the true regions of parameter space 
with high probability.28

The convergence diagnostics plots present 
in the Supplementary Material Figures S3 
to S8 demonstrates clear convergence. The 
algorithm successfully converged to reach a 
stationary distribution after a few runs. The 
chain did not get stuck in certain areas of the 
parameter space, indicating poor mixing. The 
median of the shrink factor does not increase 
above 1.1 among all haplotype frequency 
groups. The Gelman and Rubin's convergence 
diagnostic the scale reduction factors for each 
parameter is 1.09 maximum value at each 
parameter for 500 iterations and it decreases 
to 1.05 maximum value at each parameter 
for 1000 iterations. A factor of 1 implies that 
between and within chain variances are equal, 
larger values suggest that there is still a notable 
difference between chains. Shrink values 

below 1.1 or 1.05 acceptable for practical 
purposes.29 Gelman and Rubin30 and Brooks 
and Gelman31 suggest that the maximum 
Gelman–Rubin diagnostic across all model 
parameters values greater than 1.2 for any of 
the model parameters should indicate non-
convergence. In addition, the mean plots 
present how well the chains are mixing and 
how the two chains go in the same direction. 
More iteration cause further decreases in the 
scale reduction factor however, Raftery and 
Lewis32,33 test the number of iterations and 
suggest a minimum of 300 iterations. These 
diagnostics tend to be conservative so that 
more iterations may be necessary. Heidelberg 
and Welch diagnostic34,35 calculates a test 
statistic to change the null hypothesis that the 
Markov chain is from a stationary distribution, 
the chain passes the test, so the chain does 
not need to run longer. In addition, the chain 

Figure 3. The estimated haplotype frequencies for real data set (BEAST study), n=1153 individuals. In addition, the 
probabilistic analysis correcting the OR of estimated haplotype frequencies across number of SNPs. Solid line represents 
observe OR=1.50; dashed line represents observe 95% CI=1.01-2.25; solid circle and dashed line represents misclas-
sification bias corrected OR.
Haplotype 1, major allele; Haplotype 2, minor allele; Gibbs, Gibbs sampler; OR, odds ratio; SNPs, Single Nucleotide 
Polymorphisms.
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passes the Geweke diagnostic test36 that takes 
two non-over lapping parts the first 0.1 and 
last 0.5 proportions of the Markov chain and 
compares the means of both parts, using a 
difference of means test to see if the two parts 
of the chain are from the same distribution 
(null hypothesis). Accordingly, the current 
algorithm runs 500 iterations and 200 burn 
ins. The algorithm allows the user to choose 
the number of iterations, number of chains and 
number of burn in.
The Gibbs sampler methods examines possible 
haplotype combination in an individual that 
could plausibly give rise to the observed 
genotype and obtain the probability that any 
given subject carrier disease susceptibility 
haplotype. The presence of a disease 
susceptibility haplotype can be inferred in 
individual patients and the probability of their 
presence used as a weighting in a logistic 
regression predicting the risk of the haplotype. 
A positive impact of the disease susceptibility 
haplotype on the phenotype risk would indicate 
it truly affects susceptibility levels.
It is estimated that the misclassification of the 
haplotypes leads to non-differential bias in the 
exposure. The different result patterns produced 
by the probabilistic sensitivity analysis (Figure 
3B) indicate that the misclassification of 
the exposure may have affected haplotype 
estimates in haplotype analysis, although it 
can explain all invalid associations reported 
in the literature. Due to phase uncertainty, 
haplotype analysis of unrelated individuals 
underestimated the estimated association 
between haplotype and phenotype by more 
than 40%. However, only a subset of SNPs 
contains information about haplotype effects. 
The inclusion of non-informative SNPs will 
effectively divide the sample into multiple 

haplotypic groups, consequently decreasing the 
statistical power of the study, while increasing 
the degrees of freedom of the test.1 Variable 
selection techniques can be used to identify 
the most parsimonious haplotype responsible 
for the association with the phenotype. These 
methods can be used to reduce the number of 
SNPs considering a set of markers that can 
independently contribute to the association.1

The simulations were limited to ten SNPs and 
hundred individuals to simplify the comparison. 
Results from haplotypes defined at thousand 
individuals are presented in Supplementary 
Material Figures S1 and S2, the same pattern 
irrespective of whether haplotypes are defined 
at hundred or thousand loci. The novel 
approach described above did not have to 
limit the number of SNPs analysed. However, 
the large number of SNPs may be too many 
possible haplotype configurations to make 
estimation computationally practical. The 
best solution to analyse large number of SNPs 
is partition ligation (PL). Regions of interest 
are divided into short, non-overlapping SNPs, 
usually consisting of fewer than 10 SNPs. 
Haplotype reconstruction can then be applied 
within each short number of SNPs to obtain 
accurate population frequency estimates.37 In 
addition, the examples were limited to ten SNPs 
because the complexity of calculations rises 
exponentially with the number of SNPs and it 
is recommending to drop the non-informative 
SNPs when investigating the association with 
the phenotype.1 However, calculating large 
number of SNPs increases the calculation time 
and depends on available computer memory.38

Conclusion

The proposed Gibbs sampler method provides 
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greater accuracy, robust validity performance, 
the ability to handle missing genotypes and 
return the probability of possible haplotype 
combinations in each individual and the 
uncertain probability of haplotype frequencies. 
Misclassification of estimated haplotype 
frequencies leads to non-differential bias in 
exposure and affects haplotype analysis. Due 
to phase uncertainty, it underestimates the 
estimated association between haplotype and 
phenotype by more than 40%. The R code used 
for these simulations and analyses are freely 
available on request to GKD.
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