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Introduction: There are different mathematical models describing the propagation of an epidemic. These 
models can be divided into phenomenological, compartmental, deep learning, and individual-based methods. 
From other viewpoints, we can classify them into macroscopic or microscopic, stochastic or deterministic, 
homogeneous or heterogeneous, univariate or multivariate, parsimonious or complex, or forecasting or 
mechanistic. 
This paper defines a novel univariate bi-partite time series model able to describe spreading a communicable 
infection in a population in terms of the relative increment of the cumulative number of confirmed cases. The 
introduced model can describe different stages of the first wave of the outbreak of a communicable disease 
from the start to the end. 
Methods: The outcome of the model is relative increment, and it has five positive parameters: the length of 
the first days of spreading and the relative increment in these days, the potent of the mildly decreasing trend 
(after the significant decrease), and the adjusting coefficient to adapt this trend to the initial pattern, and the 
fixed ratio of the mean to the variance. 
Results: We use it to describe the propagation of various disease outbreaks, including the SARS (2003), 
the MERS (2018), the Ebola (2014-2016), the HIV/AIDS (1990-2018), the Cholera (2008-2009), and the 
COVID-19 epidemic in Iran, Italy, the UK, the USA, China and four of its provinces; Beijing, Guangdong, 
Shanghai, and Hubei (2020). In all mentioned cases, the model has an acceptable performance. In addition, 
we compare the goodness of this model with the ARIMA models by fitting the propagation of COVID-19 in 
Iran, Italy, the UK, and the USA. 
Conclusion: The introduced model is flexible enough to describe a broad range of epidemics. In comparison 
with ARIMA time series models, our model is more initiative and less complicated, it has fewer parameters, 
the estimation of its parameters is more straightforward, and its forecasts are narrower and more accurate. Due 
to its simplicity and accuracy, this model is a good tool for epidemiologists and biostatisticians to model the 
first wave of an epidemic. 
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Introduction  

Communicable diseases play a significant role 
in human life. They affect millions of people 
yearly causing a variable number of health 
problems including death. Even within the 
twenty-first century, we see that millions of 
people die of infectious diseases like measles 
and respiratory infections, and right now, 
the world is faced with a crisis; the spread of 
COVID-19. By the end of November 2022, 
this communicable disease has infected over 
637 M confirmed cases and killed over 6.6 M 
worldwide.1 Nowadays, new infectious diseases 
are spreading around the world faster than ever. 
This unprecedented rate is the result of factors 
such as the increasing ease of international 
travel, population growth, resistance to drugs, 
and degradation of the environment.2 This high 
rate highlights the importance of research on 
the spreading of communicable diseases.
The essence of these diseases is their 
transmission that is the main subject of the 
studies addressing this issue in the various 
sciences. An approach to query this subject is 
the mathematical one.3 Generally, Mathematical 
modeling is the transformation from a real-
world situation to a mathematical problem 
achieved using a mathematical language, which, 
is an idealized and simplified representation of 
the basic characteristics of the real situation by 
using a suitable set of mathematical symbols, 
concepts, relations, functions, and structures. 
Specifically, mathematical modeling in 
epidemiology provides an understanding of 
the underlying mechanisms that influence the 
spread of disease, and in the process, it suggests 
control strategies.4
The history of the modeling spread of a 
communicable disease dates back to the 

beginning of the 20th century. In 1906, Hamer 
argued that the spread of infection should 
depend on both the number of susceptible 
and infective individuals.5 Thereafter, some 
approaches were introduced to model the 
spread of the infection among them.6-10 
Generally, mathematical models describing 
the propagation of an epidemic can be divided 
into phenomenological, compartmental, deep 
learning, and individual-based methods. From 
other viewpoints, we can classify these models 
into macroscopic or microscopic, stochastic or 
deterministic, homogeneous or heterogeneous, 
univariate or multivariate, parsimonious 
or complex, or forecasting or mechanistic. 
However, these models include agent-based 
models11, random and non-random network 
models (for example, branching processes)12, 
stochastic and deterministic differential 
equation models (including compartmental 
models)13, multi-state models14, time series 
models (especially, ARIMA models)15-18, 
artificial intelligence models (notably, neural 
network models19, growth function models 
(exponential, sub-exponential, or logistic 
growth functions)20, and combinations of 
them.21 Principally, the parsimonious models 
are suitable for understanding the short-term 
behavior of the pandemic, while complex 
models -requiring more data and estimation- 
are much more accurate and able to cover the 
different scenarios.
Most of the parsimonious univariate models 
(growth function, time series, and some 
differential equation models) concern the 
beginning of the outbreak among them 
stochastic branching models and exponential 
growth rate models, which based on them, we 
can calculate the critics like the reproductive 
number (R) and the exponential rate of growth 
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(λ) to represent the intensity of the infections. 
The absence of a simple model to describe the 
propagation of the disease after passing the first 
stage of the spread motivated us to write this 
paper. 
It is worth saying that although the time series 
models have long been of interest in the 
literature, to the best of our knowledge, these 
applied time series models are restricted to the 
ARIMA family. The present paper attempts to 
address this shortage as well. 

Methods

Statistical models can be divided into two 
groups: static (stationary) and dynamic (non-
stationary). Static models do not change over 
time, then they are fixed and independent of 
time. Random variables are the most frequently 
used static statistical models. A stochastic 
process is a set of random variables defined 
on the basis of time. It is a time-dependent 
random phenomenon; therefore, it is classified 
as a dynamic model. The set of time points 
that the stochastic processes are defined on 
can be discrete or continuous. Similarly, the 
values that the random variables of a stochastic 
process take can be discrete or continuous. A 
time series is a sample path of a discrete-time 
stochastic process.22  
We present a novel model to reproduce the time 
series of the spreading of an epidemic in terms 
of relative increments of the number of infected 
individuals. We adopt a probabilistic approach 
because firstly, randomness is a major player, 
especially at the beginning of an outbreak. 

Also, there are several sources of uncertainty 
regarding predicting the course of a disease.23 
Finally, the stochastic approach promotes 
the flexibility of the model. The stochastic 
approach to modelling communicable diseases 
mainly appears in the formats of random graphs, 
agent-based models, and stochastic differential 
equations. The time series models are not so 
commonly used in the modeling of spreading. 

Construction of the model

In order to describe a mathematical model for 
the spread of a communicable disease, it is 
necessary to make some assumptions based on 
reality or evidence. Here, the model is based on 
the following assumptions:
A1. The trend of the time series of the relative 
increment is decreasing. It faces a significant 
sudden decrease, thereafter it falls gradually.24

A 2. In each time point, the distribution of the 
relative increment is normal(1). 
A 3. Over time, the ratio of variance to mean 
remains fixed(2).

To fulfil the first assumption, we restrict 
ourselves to the first wave of an epidemic.  
Let Yt is a time series of the cumulative number 
of confirmed cases at time t. We want to study 
the relative increment . It is well 
known that during a wave of an epidemic, like 
reproductive number and exponential growth 
rate, the relative increment decreases as time 
passes.24 The relative decrement has studied 
by25 but under a different name: the rate of 
growth.  
The model has five positive parameters (b, IR, 

(1)Normality is the frequently made assumption. This distribution is absolutely applicable to normal and natural charac-
teristics. Since the relative increment is a positive continuous variable, we need to modify simulated normal increments 
to describe the intended variable.
(2)This simplifier assumption helps us to define our model with less parameters. 
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K, θ, a);
b: the length of the first days of spreading 
(before the significant decrease),
IR: the relative increment in the first days of 
spreading,
θ: the potent of smoothly decreasing trend of 
the relative increments after the significant 
decrease (the acceleration of falling during the 
period of gradual decreasing) ,
a: the fixed ratio of the mean to the variance1, 
and 
K: the adjusting coefficient for the curve t-θ to 
adapt the two parts of the model. 

Therefore, the first part of the model 
(Xt~Normal(IR, IR

2
⁄a), t=1,…,b-1 ) is stationary 

and the second part (Xt~Normal (K⁄tθ, K
2
⁄at2θ) , 

t=b, b+1, … ) is non-stationary.
It is noticeable that by omitting the two first 
parameters, we obtain a simplified model 

suitable to describe the gradual decrease of the 
relative increments (t=b,b+1,…). It is possible 
to generalize the model if a in the first part 
differs from a in the second part. 
Due to the parameters used to define the present 
model and its structure, it is flexible enough 
to cover the different stages of the first wave 
of a communicable disease. This flexibility is 
well illustrated by Plot 1, wherein the effect of 
changing each parameter of the model on its 
pattern is represented. 
As it is clear from Plot 1, the formulation of 
our model indicates that increasing b (graph 2 
vs graph 1) leads to increasing the probability 
of acute growth and, therefore more expected 
cumulative number of confirmed cases. Since 
IR determines the rate of growth in the first days, 
the more parameter IR is, the more intense the 
outbreak of the disease happens in the first days 

1Notice that a is different from CV (coefficient of variation);
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Plot 1. A sample realization, the average curve, and the 60% upper and lower bounds of 100 simulations of the model 
with different parameters for 50 steps
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and thereafter (graph 3 vs graph 1). Although 
it is not so interpretable to manipulate K due 
to its adjusting role, by decreasing K (graph 4 
vs graph 1), we have a lower range of relative. 
Since θ represents the acceleration of falling 
during the gradual decrease, by declining θ 
(graph 5 vs graph 1), the graph falls later and 
we have a shallower trend. Finally, the change 
of the parameter a (graph 6 vs graph 1), as 
it is somehow similar to the inverse of the 
coefficient variation causes an opposite effect 
on the range of oscillations.
Generally, formulating a model is accompanied 
by a trade-off between three important 
and often conflicting elements: accuracy, 
transparency, and flexibility. These three 
elements refer to the ability to reproduce the 
observed data and predict future dynamics 
reliably, being understandable analytically 
(how the components of the model influence 

the dynamics and interact), and adaptability 
to new or different situations, respectively.26 
Undoubtedly, no model is perfect generally, 
particularly in epidemiology. However, our 
model is simultaneously accurate, transparent, 
and sufficiently flexible. Our model is 
competent enough to describe a wide range of 
recent outbreaks (See Table 1 and Plot 2). 
From the complexity standpoint, the models 
can be classified into two groups;

• simple or strategic models which omit most 
details and are designed only to highlight 
general qualitative behavior, and 

• detailed or tactical models, which are usually 
designed for specific situations, including 
short-term quantitative predictions. 

Detailed models are generally difficult or 
impossible to solve analytically and hence, their 
usefulness for theoretical purposes is limited, 
although their strategic value may be high.26 

Table 1. The estimated parameters for the model to fit datasets regarding some epidemics
Epidemic b IR K θ a

Cholera (Zimbabwe)* 10 0.5683 0.4961 0.8073 0.5664
Ebola (Worldwide) 3 0.7470 5.5946 1.4613 7.0739
SARS (China) 0 - 2.0561 0.9280 15.6498
MERS (South Korea) 9 0.3298 115.5675 2.4711 1.0624
HIV/AIDS (Worldwide)* 6 0.2053 0.8477 0.9976 0.0048
COVID-19 (Beijing) 9 0.4248 167.7165 2.8943 1.1424
COVID-19 (Guangdong) 11 0.3221 286.7553 3.4334 1.1209
COVID-19 (Shanghai) 7 0.8783 105.5936 2.8218 0.7418
COVID-19 (Hubei) 9 0.2760 10.0758 2.1307 22.7603
COVID-19 (China) 7 0.4661 754.1667 3.6763 16.5409
COVID-19 (Iran) 13 0.7217 45.2078 1.9042 0.0929
COVID-19 (UK)** 13 0.3272 88.2050 1.9283 0.3382
COVID-19 (UK)** 13 0.3272 5514.7 2.9317 0.0630
COVID-19 (Italy) 8 0.4753 48.0500 1.9672 0.2125
COVID-19 (USA) 24 0.3755 1539.972 2.6609 0.0532

*Cholera (Zimbabwe) and HIV/AIDS (Worldwide) data were collected weekly and annual, respectively, while other data 
were gathered daily.
**The first row of COVID-19 (UK) was obtained to predict 15 Apr – 30 May 2020, while the second row was calculated 
to predict the interval 31 May – 1 July 2020.
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We can classify our model as a simple model 
due to ignoring the steps of the disease (as 
the compartmental models) and lack of focus 
on the transmission dynamics from individual 
to individual in a population (as the random 
graphs), and as a detailed model, it deals with 
the procedure of the spreading step by step. 

Estimation of the parameters

The procedure of calculating estimations of the 
parameters is straightforward. To estimate the 
parameters of the model, we can 
  1.  Take b as the first point that the geometric 
mean of the relative increments in the previous 
points exceeds 3/2 times the geometric mean of 
the next three points or the time point that the 
relative increments fall irreversibly.
  2.  Calculate the geometric mean of the ratio 

cumulative numbers in the previous points 
(1+Xt) from t=1 to t=b-1 as the estimation of 
the parameter IR.
  3.  Estimate the parameters θ and K due to the 
following linear relation 

and  
  4.  Multiply all the observations after  

to have an identical mean and variance for all 
of the newly obtained data (Wt):
Xt~Normal (K⁄tθ, K

2
⁄at2θ

)Wt=tθ/K Xt~ Normal 
(1,1⁄a).

Therefore, the variance of the newly obtained 
data is a good candidate for 1⁄a. Accordingly, 

Plot 2. The 75% upper and lower bounds, average curve and realization of relative increments of the outbreaks regarding 
Cholera, Ebola, SARS, MERS, AIDS, and COVID-19
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â̂=1/SW 
2.

The most significant feature of a data-driven 
mathematical model is its competence in 
describing the data. The next step is devoted 
to representing the flexibility and ability of the 
model.
This model allows us to provide analysis for 
the propagation of

• the SARS epidemic of 200327

• the MERS epidemic in South Korea May 
20th – July 7th, 201828

• the Ebola outbreak of 2014-201629-30

• the propagation of HIV/AIDS from 1990 to 
201831

• the spreading of the Cholera of 2008-2009 
in Zimbabwe32,

• the COVID-19 epidemic in China and 
four of its provinces, Beijing, Guangdong, 
Shanghai, and Hubei in 20201, 

• the propagation of the COVID-19 pandemic 
in Iran, 202023,

• the propagation of the COVID-19 pandemic 
in the UK, 202033-34,

• the spreading of COVID-19 in Italy35, and
• the COVID-19 epidemic in the USA36. 

At first, according to our calculation, the 
estimations listed in Table 1 are obtained. 
Also, to illustrate the ability of our model to fit 
the pattern of different time series, we present 
the average curve and 75% upper and lower 
bounds(1) of 100 simulations conducted in the 
software MatLab (Plot 2).  

Results
Fitting the pattern

This model enables us to compare the trend of 
propagation of different epidemics or diseases 

in different populations. For example, based on 
the calculations to fit this model to describe the 
spreading of some epidemics (Table 1), during 
the periods of study, 
From the viewpoint of the outbreak in the first 
days (b), SARS has the least length of extreme 
behavior, and cholera possesses the most 
intense propagation. Regarding COVID-19, the 
USA possesses the longest period of extreme 
behavior, and this point is well reflected by its 
first rank among the involved countries.
Although the calculated reproduction number 
for COVID-19 is higher, Ebola showes the 
highest relative increment in the first days. 
This point can be due to the high percentage 
of asymptomatic infected cases in COVID-19. 
Considering the spreading of COVID-19, the 
highest initial relative increment belongs to 
Iran. For this reason, the least distance between 
the first case and becoming an epicenter 
belongs to Iran.37

COVID-19 has the most acute falling of the 
relative increments (θ).
In terms of fluctuation, HIV/AIDS has the most 
oscillating pattern (a). Concerning COVID-19, 
the USA, the UK, and Iran are the three 
countries with the highest fluctuation.  
Note that the unstable pattern of the data 
during the first days justifies its relatively poor 
performance in comparison with the following 
days (illustrated by the exit from bounds in 
Plot 2). However, this problem is common, and 
other models suffer this drawback as well.

Prediction 

To assess the performance of our model, we 
use it to predict over a period and then we 

(1) Since 90% or 95% intervals mainly lead to zero as the lower bound, we use 75% interval to better highlight the lower 
bound.
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investigate the accuracy of point predictions by 
using the following criterion:

Relative error = | predicted value-real value | ⁄ 

real value×100%.

The number of cases infected by the first wave 
of COVID-19 in the USA (12 April – 21 May), 
the UK (15 April – 30 May & 31 May – 1 July), 
Italy (9 April – 18 May), and Iran (15 March – 
15 April) was predicted by our model.23 & 33-36 
We apply two following criteria to assess the 
goodness of these predictions:
C1. The confidence interval contains the real 
value, and
C2. The relative error is less than a cut-off 
point (25%).

Since ARIMA is the most frequently used 

time series model, we used it to predict the 
number of cases over the mentioned periods 
in the mentioned countries. Then, we compare 
the performance of the two models using the 
criteria above. Also, we added the results of 
the other studies using ARIMA to predict the 
propagation of COVID-19 to further highlight 
the results.  These studies include KSA (21 
April – 21 May), Iran (5 – 24 May & 24 April 
– 7 July), Italy (31 March – 31 May & 24 April 
– 7 July), the USA (24 April – 7 July), and the 
UK (24 April – 7 July).38-41

Table 2 shows that our model has a great 
performance in terms of the second criterion, 
and it is superior to ARIMA while from the 
viewpoint of the first criterion, ARIMA is 
a little better than it.  It is noticeable that the 
relatively narrower intervals of our model 

Table 2. Some examples of performance of our model and ARIMA model

Country Intended Period Count
Before Period

Real Count
During

Predicted Count
During (80% CI)

Relative 
Error

KSA 21 Apr – 21 May 11631 53 K ARIMA [38] 115 K 117%
Iran 5 May – 24 May 99970 37 K ARIMA [39] 18 K 51%
Italy 31 Mar – 31 May 105776 127 K ARIMA [40] 77 K 39%
Iran 24 Apr – 7 Jul 88194 168 K ARIMA [41] 92 K 45%
Italy 24 Apr – 7 Jul 192979 149 K ARIMA [41] 207 K 39%
USA 24 Apr – 7 Jul 933833 2167 K ARIMA [41] 2700 K 25%
UK 24 Apr – 7 Jul 129975 157 K ARIMA [41] 370 K 136%
UK 15 Apr – 30 May 93400 159 K Model [33] 189 (149-223 K) 19% *

Model [34] 180 K (150-207 K) 13% *
ARIMA 513 K (198 – 828 K) 223% 

UK 31 May – 1 July 232664 52 K Model [34] 59 K (47-72 K) 13% *
ARIMA 66 K (8 – 104 K) 27% *

Iran 15 Mar – 15 Apr 13938 62 K Model [23] 57 K (21 – 119 K) 8% *
ARIMA 59 K (41 – 85 K) 5 % *

USA 12 Apr – 21 May 546508 1091 K Model [36] 919 K (830 – 995 K) 16%
ARIMA 899 K (679 – 1119 K) 18 % *

Italy 9 Apr – 18 May 139408 87 K Model [35] 98 K (87-109 K) 13%
ARIMA 142 K (44 – 235 K) 63 % *

Asterisk shows that the CI of prediction includes the real count of interest.
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is the main reason for its inferiority in terms 
of interval predictions. However, if we used 
90% intervals, our model would be superior to 
ARIMA in both aspects. 
In terms of interpretability, while the ARIMA 
models fitted to the countries Saudi Arabia, Iran, 
Italy, the UK, and the USA say nothing about 
their comparison, the new model enables us to 
compare the trend of propagation in different 
countries. Based on the estimated parameters 
of the model to describe the spreading of 
COVID-19 in different countries, we realize 
some valuable points -which are comparable- 
including:

• the length of un-controlled behavior of the 
epidemic in different regions,

• the extreme intensity of the epidemic in 
different regions, and

• the rate of falling relative increments in 
different regions.

Discussion

There are ways to restrict or generalize the 
model; We can omit the two first parameters to 
obtain a simplified model suitable to describe 
the gradual decrease of the relative increments 
(t=b,b+1,…), or generalize the model by 
replacing a of the first or second part with a 
new parameter. 
Although the ability of our model is limited to 
the first wave, it is possible to adopt this model 
for the other waves. If we fit the model for each 
wave separately and ignore a number of days 
at the beginning of each wave, it is possible to 
apply it to other waves as well.  
Our model needs a transformation to change 
the numbers to relative increments and 
therefore an inverse transformation to change 
the increments back to numbers. Although 

these two transformations are straightforward, 
it may seem a drawback. 
The parameters in this model are interpretable 
and this is an advantage of our model in 
comparison with the ARIMA model. This 
model is much less complicated than ARIMA 
models; It has only five parameters, therefore, 
its complexity is comparable with an ARIMA 
(p,d,q) model, which p + q ≤4, while the volume 
of calculation of this model is much less than 
ARIMA models. Since our model is trend-
based, the estimation of its parameters is easier 
than ARIMA models, which are correlation-
based.  
Both the ARIMA model and our model are based 
on some presumptions. ARIMA applies to the 
dataset that after some differentiating (once, 
twice, or d times), a stationary time series will 
be obtained. If this presumption is not met, we 
must look for some suitable transformation to 
get a stationary time series. Box-Cox is one of 
these transformation methods.22 It is noticeable 
that sometimes the transformation does not 
lead to a suitable time series. About our model, 
we presume that the relative increment is 
distributed normally. However, neither ARIMA 
nor our model fits well more than a wave.
Finally, the length of the forecast intervals by 
ARIMA models is significantly greater than 
the analogous confidence intervals in our 
model.38-41 In some cases, the interval predicted 
by ARIMA models is so wide that it is trivial, 
non-informative, and worthless. On the other 
hand, our narrower interval predictions have 
less likelihood of including the real value of 
interest. 
Owing to the unstable pattern of the data during 
the first days of an outbreak, over these days, 
the model has a relatively poor performance in 
comparison with the following days. However, 
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this problem is common, and other models 
suffer this drawback as well.

Conclusion

In the present paper, we defined a novel bi-partite 
time series model able to describe the spreading 
of a communicable infection in a population 
from the start of its emerging to the end of the 
first wave. This model has five parameters and 
we explained how to estimate them. Because of 
these parameters and the structure of the model, 
it is flexible enough to reproduce the different 
stages of a great variety of communicable 
diseases, among them COVID-19 in Iran, 
Italy, the UK, the USA, China, and four of 
its provinces; Beijing, Guangdong, Shanghai, 
and Hubei. In comparison with ARIMA time 
series models, our model is more initiative 
and less complicated; it has fewer parameters; 
the estimation of its parameters is more 
straightforward; and its point and interval 
forecasts are more accurate and narrower, 
respectively. The model has some limitations 
to consider, including three presumptions, 
the unstable pattern of data in the initial days 
of the wave and therefore its relatively poor 
performance, the ability to model the first wave 
and adapt it to the other waves, and required 
transformations.
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