Original Article

Promotion time cure model with generalized Poisson-Inverse Gaussian Distribution

Abstract

Background & Aim: In the survival data with Long-term survivors the event has not occurred for all the patients despite long-term follow-up, so the survival time for a certain percent is censored at the  end  of the  study.  Mixture  cure  model  was  introduced  by Boag,  1949  for  reaching  a  more efficient analysis of this set of data. Because of some disadvantages of this model non-mixture cure model was introduced by Chen, 1999, which became well-known promotion time cure model. This model was based on the latent variable distribution  of N. Non mixture cure models has obtained much  attention  after the introduction  of the latent activating  Scheme  of Cooner,  2007, in recent decades, and diverse distributions have been introduced for latent variable.
Methods  & Materials:  In this article,  generalized  Poisson- inverse  Gaussian  distribution  (GPIG) will be presented for the latent variable of N, and the novel model which is obtained will be utilized in analyzing long-term survival data caused by skin cancer. To estimate the model parameters with Bayesian  approach,  numerical  methods  of  Monte  Carlo  Markov  chain  will  be  applied.  The comparison drawn between the models is on the basis of deviance information criteria (DIC). The model with the least DIC will be selected as the best model.
Results: The introduced  model  with GPIG, with deviation  criterion  of 411.775, had best fitness than  Poisson  and  Poisson-inverse  Gaussian  distribution  with  deviation  criterion  of 426.243  and 414.673, respectively.
Conclusion:
In the analyzing long-term survivors, to overcome high skewness and over dispersion using distributions that consist of parameters to estimate these statistics may improve the fitness of model. Using distributions which are converted to simpler distributions in special occasions, can be applied as a criterion for comparing other models.

Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data. Berlin, Germany: Springer; 1997.

Maller RA, Zhou X. Survival analysis with long-term survivors. New York, NY: Wiley; 1996.

Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Series B Stat Methodol 1949; 11(1): 15-53.

Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38(4): 1041-6.

Kuk AYC, Chen CH. A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79(3): 531-41.

Sy JP, Taylor JM. Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56(1): 227-36.

Peng Y, Dear KB, Denham JW. A generalized F mixture model for cure rate estimation. Stat Med 1998; 17(8): 813-30.

Tsodikov AD, Ibrahim JG, Yakovlev AY. Estimating cure rates from survival data: an Alternative to two-component mixture models. J Am Stat Assoc 2003; 98(464): 1063-78.

Yakovlev AY, Tsodikov AD. Stochastic models of tumor latency and their biostatistical applications. Hackensack, NJ: World Scientific; 1996.

Chen MH, Ibrahim JG, Sinha D. A new bayesian model for survival data with a surviving fraction. J Am Stat Assoc 1999; 94(447): 9.

Cooner F, Banerjee S, Carlin BP, Sinha D. Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 2007; 102(478): 560-72.

Borges P, Rodrigues J, Balakrishnan N. Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data. Comput Stat Data Anal 2012; 56(6): 1703-13.

Rodrigues J, de Castro M, Cancho VG, Balakrishnan N. COM Poisson cure rate survival models and an application to a cutaneous melanoma data. J Stat Plan Inference 2009; 139(10): 3605-11.

Cancho V, Rodrigues J, de Castro M. A flexible model for survival data with a cure rate: a Bayesian approach. J Appl Stat 2011; 38(1): 57-70.

Rahimzadeh M, Baghestani A R, Kavehei B. On hypergeometric generalized negative binomial distribution in promotion time cure model. J of Stat Sci 2013; 7(1): 45-60.

Baghestani AR, Rahimzadeh M, Pourhoseingholi MA. Generalized poisson- lindely distribution in promotion time cure model. Pak J Stat Oper Res 2014; 10(4): 361-8.

Joe H, Zhu R. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biom J 2005; 47(2): 219-29.

Rigby RA, Stasinopoulos DM, Akantziliotou C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput Stat Data Anal 2008; 53(2): 381-93.

Sichel HS. Repeat-buying and the generalized inverse gaussian-poisson distribution. J R Stat Soc Ser C 1982; 31(3): 193-204.

Stein GZ, Zucchini W, Juritz JM. Parameter estimation for the sichel distribution and its multivariate extension. J Am Stat Assoc 1987; 83(399): 938-44.

Zhu R, Joe H. Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family. Stat Probab Lett 2009; 79(15): 1695-703.

Chib S, Greenberg E. Understanding the metropolis-hastings algorithm. Am Stat 1995; 49(4): 327-35.

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Series B 2002; 64(4): 583-639.

Scheike T. Timereg package, with contributions from T. Martinussen and J. Silver R package version 1.1-6; 2009.

R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2007.

Cancho CG, Louzada F, Ortega EM. The power series cure rate model: an application to a cutaneous melanoma data. Commun Stat Simul Comput 2013; 42(3): 586-602.

Spiegelhalter D, Thomas A, Best N, Lunn D. WinBUGS User Manual, Version 1.4 [Online]. [cited 2003]; Available from: URL: https://faculty.washington.edu/jmiyamot/p548/sp iegelhalter%20winbugs%20user%20manual.pdf

Sankaran M. Mixtures by the inverse gaussian distribution. Sankhya Ser B 1968; 30(3-4): 455-8.

Yiqi B, Russo CM, Cancho VG, Louzada F. Influence diagnostics for the Weibull- Negative-Binomial regression model with cure rate under latent failure causes. J Appl Stat 2016; 43(6): 1027-60.

Files
IssueVol 2 No 2 (2016) QRcode
SectionOriginal Article(s)
Keywords
Generalized Poisson-inverse Gaussian distribution Long-term survivors Promotion time cure model Bayesian approach

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Rahimzadeh M, Kavehie B. Promotion time cure model with generalized Poisson-Inverse Gaussian Distribution. JBE. 2016;2(2):68-75.